祖山研究室
japanese home
MENU
Member
Research
Publication

Last update
2014/1/28
Last update
Research
Cavitation S Peening®

Summary of pdf file about Cavitation S Peening® is here
Cavitation S Peening® is a peening method as follows;
 ・Shotless peening − Peening without shots
 ・Shock wave peening − Peening by using shock wave induced by cavitation bubble collapse
 ・Dr. H. Soyama et al. invents Cavitation S Peening®.

Cavitation normally causes severe damages in fluid machinery such as pumps, turbines, valves,screw propellers, and so on. In case of Cavitation S Peening®, cavitation is controlled by using a cavitating jet (see Fig.1). Impact force of shock wave induced by cavitation bubble collapse peensurface of materials as same as shot peening, and then Cavitation S Peening® improves fatigue strength of materials (see Fig.2). Advantages of Cavitation S Peening® are as follows;
 ・Shots are not necessary, i.e. Shotless peening.
 ・Peened surface is extremely smooth (see Fig.3).
 ・It is easy to peen bottom of gear teeth and/or narrow region.
 ・There is no thermal effect to material surface.
 ・Expensive plunger pumps are not required, since the impact force of cavitation bubble was used.
 ・It is easy to control the peening area.

What is cavitation?
What is cavitating jet?
Difference between normal water jet and cavitating jet
Effect of Cavitation S Peening®
Advantages of Cavitation S Peening®
Systems of Cavitation S Peening®
How to measure cavitation impact

Equipment
Cavitating jet apparatus for material testing
Cavitation peening system (Cavitating jet in air)
Cavitation peening system (Open type)
Laser microscope
Luminescence analyzer
Micro/Nano hardness tester
XRD for residual stress measurement (2D method)
XRD for residual stress measurement (sin²ψmethod)
XRD for micro strain measurement
Cavitation impact counting system
Cavitation peening system (Closed type)
Eddy current system
Electro chemical measurement system
Electro polishing system
Gas-chromatography
High speed video camera
Laser Doppler Vibrometer
Plate bending fatigue tester
Rockwell hardness tester
Rotating bending fatigue tester
Shot peening system
Surface roughness meter
Vickers hardness tester

Recent Main Project (≥ 20,000,000 yen)
“Control of Radicals by Hydrodynamic Cavitation” supported by The Canon Foundation, 2010FY-2011FY.
“Production of New Functional Layer by Using Cavitation Shotless Peening” supported by the Japan Society for the Promotion of Science under the Grant-in-aid for Scientific Research (A), 2008FY-2010FY.
“Research and Development of New Cavitation Peening System” supported by Ministry of Economy, Trade and Industry, 2006FY-2007FY.

REFERENCES
1. H.Soyama, H.Kato and R.Oba, Cavitation Observations of Severely Erosive Vortex Cavitation Arising in a Centrifugal pump, Proc. 3rd International Conference on Cavitation, Cambridge, I Mech E, 103-110, 1992.

2. K.Sato, H.Soyama, Y.Yamauchi, T.Ikohagi, R.Oba, and R.Oshima, A Study on Peening by Submerged Ultra-High-Speed Water-Jet, Jet Cutting Technology, 413-424.

3. H.Soyama, T.Narasaka, R.Oba, R.Oshima, J.Satoh, S.Tanabe and K.Shimmei, Marked Change in Subcavitation-Cascade Performance Resulting from a Very Slight Modification in Leading Edges, JSME International Journal, 36B (4), pp. 524-531, 1993.

4. Y.Yamauchi, H.Soyama, Y.Adachi, K.Sato, T.Shindo, R.Oba, R.Oshima and M.Yamabe, Suitable Region of High-Speed Submerged Water Jets for Cutting and Peening, JSME International Journal, 38B (1), 31-38.

5. H.Soyama, Y.Yamauchi, Y.Adachi, K.Sato, T.Shindo and R.Oba, High-Speed Observations of the Cavitation Cloud around a High-Speed Submerged Water Jet, JSME International Journal, 38B (2), 245-251, 1995.

6. H. Soyama and A. Lichtarowicz, Cavitating Jets - Similarity Correlations -, J. Jet Flow Eng., 13-2, 9-19, 1996.

7. H. Soyama, Y. Yamauchi, K. Sato, T. Ikohagi, R. Oba and R. Oshima, High-Speed Observation of Ultrahigh-Speed Submerged Water Jets, Exp. Therm. Fluid Sci., 12, 411-416, 1996.

8. H. Soyama, A. Lichtarowicz, Useful Correlations for Cavitating Water Jet, Rev. High Pres. Sci. Technol., 7, 1456-1458, 1998.

9. H. Soyama, A. Lichtarowicz, T. Momma and E. J. Williams, A New Calibration Method for Dynamically Loaded Transducers and Its Application to Cavitation Impact Measurement, J. Fluids Eng., 120, 712-718, 1998.

10. H. Soyama and M. Asahara, Improvement of the Corrosion Resistance of a Carbon Steel Surface by a Cavitating Jet, J. Mater. Sci. Lett., 18, 1953-1955, 1999.

11. H. Soyama, J. D. Park and M. Saka, Use of Cavitating Jet for Introducing Compressive Residual Stress, Trans. ASME, J. Manuf. Sci. Eng., 122, 83-89, 2000.

12. H. Soyama and H. Kumano, Oxidation-Induced Stacking Faults Introduced by Using a Cavitating Jet for Getering in Silicon, Electrochem. Solid-State Lett., 3, 93-94, 2000.

13. H. Soyama, Improvement in Fatigue Strength of Silicon Manganese Steel SUP7 by Using a Cavitating Jet, JSME Inter. J., 43A, 173-178, 2000.

14. H. Soyama, Surface Modification of Materials Using a Cavitating Jet, Corrosion Eng., 49, 485-495, 2000.

15. H. Kumano, H. Soyama and M. Saka, Possibility of Gettering in Silicon Wafer by Using a Cavitating Jet, J. Jet Flow Eng., 18-2, 4-9, 2001.

16. H. Soyama, T. Kusaka and M. Saka, Peening by the Use of Cavitation Impacts for the Improvement of Fatigue Strength, J. Mater. Sci. Lett., 20, 1263-1265, 2001.

17. H. Soyama, K. Saito and M. Saka, Improvement of Fatigue Strength of Aluminum Alloy by Cavitation Shotless Peening, Trans. ASME, J. Eng. Mater. Technol., 124, 135-139, 2002.

18. H. Soyama and H. Kumano, The Fundamental Threshold Level - a New Parameter for Predicting Cavitation Erosion Resistance, J. Test. Eval., 30, 421-431, 2002.

19. D. O. Macodiyo, H. Soyama and M. Saka, Recrystallization-Etch Observation of Plastic Deformation Caused by Cavitation Shotless Peening, J. Mater. Sci. Lett., 22, 115-117, 2003.

20. H. Soyama, K. Sasaki, D. Odhiambo and M. Saka, Cavitation Shotless Peening for Surface Modification of Alloy Tool Steel, JSME Inter. J., 46A, 398-402, 2003.

21. M. Futakawa, H. Kogawa, S. Ishikura, H. Kudo and H. Soyama, Localized-Impact Damage Caused by Proton Bombarding in Mercury Target, J. Phys. IV France, 110, 583-588, 2003.

22. D. Odhiambo and H. Soyama, Cavitation Shotless Peening for Improvement of Fatigue Strength of Carbonized Steel, Inter. J. Fatigue, 25, 1217-1222, 2003.

23. D. O. Macodiyo, H. Soyama and M. Saka, Effect of Cavitation Number on the Improvement of Fatigue Strength of Carburized Steel Using Cavitation Shotless Peening, Key Eng. Mater., 261-263, 1245-1250, 2004.

24. H. Kumano, H. Soyama and M. Saka, Evaluation of the Damage for Gettering in Silicon Wafer Introduced by a Cavitating Jet, Key Eng. Mater., 261-263, 1403-1408, 2004.

25. H. Soyama, Introduction of Compressive Residual Stress Using a Cavitating Jet in Air, Trans. ASME, J. Eng. Mater. Technol., 126, 123-128, 2004.

26. Y. Ju, Y. Ohno, H. Soyama and M. Saka, Electrical Characterization of Doped Silicon Using High-Frequency Electromagnetic Waves, J. Mater. Sci. Technol., 20, 1-2, 2004.

27. H. Kumano and H. Soyama, Backside Damage Gettering of Cu by Using a Cavitating Jet, Electrochem. Solid-State Lett., 7, G51-G52, 2004.

28. H. Soyama and M. Futakawa, Estimation of Incubation Time of Cavitation Erosion for Various Cavitating Conditions, Tribology Lett., 17, 27-30, 2004.

29. H. Soyama, D. O. Macodiyo and S. Mall, Compressive Residual Stress into Titanium Alloy Using Cavitation Shotless Peening Method, Tribology Lett., 17, 501-504, 2004.

30. H. Kumano and H. Soyama, Evaluation of the Effectiveness of Backside Damage Gettering in Silicon Introduced by a Cavitating Jet, Appl. Phys. Lett., 85, 3935-3937, 2004.

31. H. Soyama and D. O. Macodiyo, Fatigue Strength Improvement of Gears Using Cavitation Shotless Peening, Tribology Lett., 18, 181-184, 2005.

32. M. Futakawa, T. Naoe, C.C. Tsai, H. Kogawa, S. Ishikura, Y. Ikeda, H. Soyama and H. Date, Pitting Damage by Pressure Waves in a Mercury Target, J. Nucl. Mater., 343, 70-80, 2005.

33. H. Soyama, M. Futakawa and K. Homma, Estimation of Pitting Damage Induced by Cavitation Impacts, J. Nucl. Mater., 343, 116-122, 2005.

34. Y. Ju, Y. Hirosawa, H. Soyama and M. Saka, Contactless Measurement of Electrical Conductivity of Si Wafers Independent of Wafer Thickness, Appl. Phys. Lett., 87, 162102-1-3, 2005.

35. H. Soyama, High-Speed Observation of a Cavitating Jet in Air, Trans. ASME, J. Fluids Eng., 127, 1095-1101, 2005.

36. H. Soyama and M. Futakawa, Estimation of Cavitation Intensity from the Time Taken for Bubbles to Develop, Tribology Lett., 23, 23-26, 2006.

37. D. O. Macodiyo, H. Soyama, T. Masakawa and K. Hayashi, Microdefects Induced by Cavitation for Gettering in Silicon Wafer, J. Mater. Sci., 41, 5380-5382, 2006.

38. D. O. Macodiyo and H. Soyama, Optimization of Cavitation Peening Parameters for Fatigue Performance of Caburized Steel Using Taguchi Methods, J. Mater. Proces. Technol., 178, 234-240, 2006.

39. D. O. Macodiyo, H. Soyama and K. Hayashi, Characterization of Polysilicon Thin Films for MEMS Applications, WSEAS Trans. Syst., 5, 2418-2422, 2006.

40. H. Soyama and M. Mikami, Improvement of Fatigue Strength of Stainless Steel by Using a Cavitating Jet with an Associated Water Jet in Water, Key Eng. Mater., 353-358, 162-165, 2007.

41. Y. Ju, T. Miyadu, H. Soyama and M. Saka, Quantitative Evaluation of Cracks under Water by Microwaves, Key Eng. Mater., 353-358, 2361-2365, 2007.

42. H. Soyama, Improvement of Fatigue Strength by Using Cavitating Jets in Air and Water, Journal of Materials Science, 42, 6638-6641, 2007.

43. M. Seki, H. Soyama, M. Fujii and A. Yoshida, Rolling Contact Fatigue Life of Cavitation-Peened Steel Gear, Tribology Online, 3, 116-121, 2008.

44. H. Soyama, Introduction of Macro-Strain with Releasing Micro-Strain by Cavitation Shotless Peening, Inter. J. Modern Phys. B, 22, 1680-1685, 2008.

45. H. Soyama, M. Shimizu, Y. Hattori and Y. Nagasawa, Improving the Fatigue Strength of the Elements of a Steel Belt for CVT by Cavitation Shotless Peening, J. Mater. Sci., 43, 5028-5030, 2008.

46. H. Soyama and N. Yamada, Relieving Micro-Strain by Introducing Macro-Strain in a Polycrystalline Metal Surface by Cavitation Shotless Peening, Mater. Lett., 62, 3564-3566, 2008.

47. A. Kai and H. Soyama, Visualization of the Plastic Deformation Area Beneath the Surface of Carbon Steel Induced by Cavitation Impact, Scripta Materialia, 59, 272-275, 2008.

48. H. Soyama, Y. Sekine and Y. Oyama, Improvement of the Fatigue Strength of Stainless Steel SUS316L by a Cavitating Jet with an Associated Water Jet in Water, ISIJ International, 48 (11), 1577-1581, 2008.

49. Y. Sekine, H. Soyama, Evaluation of the Surface of Alloy Tool Steel Treated by Cavitation Shotless Peening Using an Eddy Current Method, Surface & Coatings Technology, 203 (16), 2254-2259, 2009.

50. H. Lee, S. Mall and H. Soyama, Fretting Fatigue Behavior of Cavitation Shotless Peened Ti-6Al-4V, Tribology Letters, 36 (2), 89-94, 2009.

51. Y. Sekine and H. Soyama, Surface Modification of Alloy Tool Steel for Forging Dies by Cavitation Peening, Review of Automotive Engineering, 30 (4), 393-399, 2009.

52. H. Soyama and Y. Sekine, Sustainable Surface Modification Using Cavitation Impact for Enhancing Fatigue Strength Demonstrated by a Power Circulating-Type Gear Tester, International Journal of Sustainable Engineering, 3 (1), 25-32, 2010.

53. O. Takakuwa, M. Nishikawa and H. Soyama, Technique for Partially Strengthening Electrical Steel Sheet of IPM Motor Using Cavitation Peening, Materials Science and Technology, 2010, DOI 10.1179/026708310X12712410311695 (in Press).


Copyright Soyama Laboratory.