
Fundamental of “Cavitation Peening” is now on YouTube.  
3 min. 
https://youtu.be/BurRGrmOGQY 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Invited review paper about “cavitation peening” is available 
on following URL as OPEN ACESS Journal.   
http://www.oldcitypublishing.com/wp-content/uploads/2017/11/IJPSTv1n1p3-60Soyama.pdf 

H. Soyama,  

“Key Factors and Applications of Cavitation Peening” 
International Journal of Peening Science and Technology 
Vol. 1 (2017), pp. 3-60.  



Cavitation S Peening® 
S：Shotless, Shockwave, Smooth, Soyama

                       is a peening method

using cavitation impacts in the same way as shot peening 

to improve fatigue strength and/or to introduce compressive 

residual stress.  The peening method using cavitation 

impact is called “cavitation shotless peening (CSP)”, as 

shots are not required (see Fig. 1).  In the case of cavitation 

shotless peening, cavitation is generated by cavitating jet.

           is phase change phenomena from

liquid-phase to gas-phase.  It is similar to boiling, 

but, in the case of cavitation, liquid-phase becomes 

gas-phase by decrease of static pressure until 

saturated vapor pressure due to increase of flow 

velocity (see Fig. 2).  When the static pressure is 

increased by decrease of the flow velocity, the 

cavitation bubble is collapsed.  At the cavitation 

bubble collapse, a part of the bubble is deformed 

and a micro-jet is produced (see Fig. 3).  As the 

speed of the micro-jet is about 1,500 m/s, the 

micro-jet produces plastic deformation pit on the 

solid surface.  After the cavitation bubble shrink, the 

cavitation bubble rebounds.  At the rebound, shock 

wave is produced.  The shock wave also produces 

plastic deformation (see Fig. 3).    

             is a jet with cavitation bubbles produced by injecting a high-speed water jet into water 

(see Fig. 4).  The cavitation bubbles take place in the low pressure region of vortex core in the shear layer 

around the jet.  The vortex cavitations combine and big cavitation cloud is produced.  When the cavitation 

cloud hit the surface, cavitation impacts are produced at bubble collapses.  Soyama successfully produced 

cavitating jet in air by injecting a high-speed water jet into a low-speed water jet.   

*1 H.Soyama, Trans. ASME, Journal of Fluids Engineering, Vol. 127, No. 4, 2005, pp. 1095-1101. [2015.5.15] 
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Fig. 2  Phase diagram of water and Bernoulli’s equation 
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― Improvement of Fatigue Strength ― 
Cavitation S Peening® improves the fatigue strength of gear made of carburized chromium molybdenum steel 
SCM420H*1.  It also enhances the fatigue strength of carburized chromium molybdenum SCM420*2 and 
SCM415*3, aluminum alloy AC4CH-T6*4, Duralumin, magnesium alloy, stainless steel, silicon manganese steel 
and other materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
*1  H.Soyama and Y.Sekine, “Sustainable Surface Modification Using Cavitation Impact for Enhancing Fatigue Strength 

Demonstrated by a Power Circulating-Type Gear Tester,” International Journal of Sustainable Engineering, Vol. 3, No. 1, 
2010, pp. 25 - 32.  

*2  H.Soyama, “Improvement of Fatigue Strength of Metallic Materials by Cavitation Shotless Peening,” Metal Finishing 
News, Vol. 7, March issue, 2006, pp. 48 - 50. 

*3  D.Odhiambo and H.Soyama, “Cavitation Shotless Peening for Improvement of Fatigue Strength of Carbonized Steel,” 
International Journal of Fatigue, Vol. 25, Nos. 9-11, 2006, pp. 1217 - 1222.  

*4  H.Soyama, K.Sasaki, K.Saito and M.Saka, “Cavitation Shotless Peening for Improvement of Fatigue Strength of Metallic 
Materials,” Transaction of Society of Automotive Engineers of Japan, Vol. 34, No. 1, 2003, pp. 101 - 106. 
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Fig. 5  Improvement of fatigue strength of gear  
       demonstrated using a power circulating  
       type gear tester (Carburized SCM420H)*1 
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Fig. 6  S-N curve of rotating bending fatigue 
       test (Carburized SCM420)*2 
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Fig. 7  S-N curve of rotating bending fatigue 
       test (Carburized SCM415)*3 
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Fig. 8  S-N curve of rotating bending fatigue 
       test (AC4CH-T6)*4 



― Peened Surface ― 
Cavitation S Peening® introduces compressive residual stress with a considerable less surface roughness 
compared to that from shot peening (see Figs. 9 and 10).  Individual pit induced by Cavitation S Peening® does 
not have sharp tip up around the pit, compared to a pit induced by ball indentation at nearly constant volume and 
depth (see Fig. 11).  It is very shallow compared to the pit at constant depth of plastic deformation area (see Fig. 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

*5  H.Soyama, D.O.Macodiyo and S.Mall, “Compressive Residual Stress into Titanium Alloy Using Cavitation Shotless 
Peening Method,” Tribology Letters, Vol. 17, No. 3, 2004, pp. 501 - 504.  

*6  H.Soyama, “Introduction of Compressive Residual Stress Using a Cavitating Jet in Air,” Trans. ASME, Journal of 
Engineering Materials and Technology, Vol. 126, No. 1, 2004, pp. 123 - 128. 

*7 H.Soyama, “Distribution of Residual Stress around Plastic Deformation Pit Induced by Cavitation Shotless Peening,” 
Proceedings of 2005 Annual Meeting of JSME/MMD, 2005, pp. 361 - 362.  

*8 A. Kai and H.Soyama, “Visualization of the Plastic Deformation Area beneath the Surface of Carbon Steel Induced by 
Cavitation Impact,” Scripta Materialia, Vol. 59, No. 3, 2008, pp. 272 - 275.  
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Fig. 9  Peened surface and residual stress (Ti-6Al-4V)*5 
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Fig. 10  Peened surface and residual stress (SKD61)*6 
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              Fig. 11  Aspect of pit*7 

35 m 90 % 

450 m 

Volume 2.3 mm3 32 m 

480 m 

2.2 mm3 90 %

Fig. 12  Depth and plastic deformation area*8 

h' 
h 



― Singularity of CSP ― 
Full width at half maximum of diffracted X-ray profile from alloy tool steel peened by Cavitation S Peening® 
becomes narrower than that of not peened specimen (see Fig. 13).  The ratio of arc height between N-gage and 
A-gage of Almen strip peened by Cavitation S Peening® is different from that of shot peening (see Fig. 14).  

 

 

 

  

 

 

 

 

 

 
 

― Peening Effect ― 
Cavitation S Peening® can be applied for suppression of cracks induced by heat cycle (see Fig. 15), relief of 
micro strain (see Fig. 16), peen forming (see Fig. 17), and enhancement of CVT element (see Fig. 18). 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

*9  H.Soyama, “Macro and Micro Strain in Polycrystalline Metal Controlled by Cavitation Shotless Peening,” Metal Finishing 
News, Vol. 7, November issue, 2006, pp. 48 - 50. 

*10 H.Soyama, H. Kumano, K. Saito and M. Saka, “Evaluation of Peening Intensity of Cavitation Shotless Peening by Using 
Almen Strip,” Proceedings of APCFS & ATEM '01, 2001, pp. 1047 - 1050.  

*11 H.Soyama, “Surface Modification of Metallic Materials by Using String Cavitation,” Journal of Japan Society for Heat Treatment, Vol. 
48, No. 2, 2008, pp. 74 - 78.  

*12 H.Soyama and N.Yamada, “Relieving Micro-Strain by Introducing Macro-Strain in a Polycrystalline Metal Surface by 
Cavitation Shotless Peening,” Materials Letters, Vol. 62, No. 20, 2008, pp. 3564 - 3566.  

*13 H.Soyama and K. Saito, “Peen Forming Using a Cavitating Jet in Air,” Proceedings of Pacific Rim International 
Conference on Water Jetting Technology, 2003, pp. 429 - 436.  

*14 H.Soyama, M.Shimizu, Y.Hattori and Y.Nagasawa, “Improving the Fatigue Strength of the Elements of a Steel Belt for 
CVT by Cavitation Shotless Peening,” Journal of Materials Science, Vol. 43, No. 14, 2008, pp. 5028 - 5030.  
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Fig. 13  Diffracted X-ray profile and peened 
        surface of alloy tool steel SKD61*9 
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Fig. 16  Relief of micro strain by CSP*12 
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Fig. 18  S-N curve of CVT elements*14 
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Fig. 17  Curvature induced by CSP*13 
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Fig. 14  Relation on arc height between N-and 
        A-gauge, and surface of Almen strip*10 
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Cavitation S Peening® 
― Several Types of Cavitating Jets and Water Jet ― 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*1  H.Soyama, Trans. ASME, Journal of Engineering Materials and Technology, Vol. 126, No. 1, 2004, pp. 123 - 128.  
*2  H.Soyama, Trans. ASME, Journal of Fluids Engineering, Vol. 127, No. 4, 2005, pp. 1095- 1101.  
*3  H.Soyama, Journal of Materials Science, Vol. 42, No. 16, 2007, pp. 6638-6641.   
*4  H.Soyama et al., ISIJ International, Vol. 48, No. 11, 2008, pp. 1577-1581.   
*5  H.Soyama et al., Surface & Coatings Technology, Vol. 205, 2011, pp. 3167-3174.   
*6  H.Soyama and O.Takakuwa, Journal of Fluid Science and Technology, Vol. 6, No. 4, 2011, pp. 510-521.   
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Fig. 1  Erosion pattern of several types of cavitating jets and a normal water jet *1, *2, *3, *4, *5, *6 

At cavitation peening, there is no erosion, as process is finished before erosion takes place.    
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Fig. 2  Changing appearance of a cavitating jet in air with time*2 
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Fig. 3  S-N curve of SUS316L*3 
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Fig. 4  S-N curve of grinded SUS316L*4
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Injection Pressure and Nozzle Size

In order to avoid the damage, the low injection pressure and large nozzle size is 
better than the high injection pressure for cavitation peening. 

Jet power = (Injection pressure) X (Flow rate)
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