1. 宇宙構造物の振動制御・ロケット轟音制御・打ち上げ衝撃制御
宇宙ステーション・月面基地・人工衛星などを含む宇宙構造物を対象にした振動制御・音響透過低減・衝撃制御に取り組んでいます。 宇宙空間では、豊富な電力供給を望むことが出来ません。 その為に宇宙空間では、自家発電を行いながら振動を効果的に抑制するセルフパワード(自家発電)型振動制御が必要です。 当研究室では、次世代宇宙ステーションの構成部材であるトラス構造物に着目しています。研究室にトラス構造物を設置し、実証実験を行っています。


参考文献
[2026] Improved Control Strategy for Magnetostrictive-Based Vibration Suppression Method Using Negative Capacitor in Flexible Multiple-Degree-Of-Freedom Structures
Li, A., Kobayashi, Y., Hara, Y., Makihara, K.
Journal of Sound and Vibration, Vol. 624, Article No. 119535 (Open Access)
[2025] Magnetostrictive Vibration Suppression via Integration of Current Amplification Negative Capacitor and Current Inversion Semi-Active Control Circuit
Li, A., Kobayashi, Y., Hara, Y., Makihara, K.
Journal of Intelligent Material Systems and Structures, Vol. 36, No. 1, pp. 53-73 (Open Access)
[2024] Comparison of Magnetostrictive-Actuated Semi-Active Control Methods Based on Synchronized Switching
Li, A., Kobayashi, Y., Hara, Y., Otsuka, K., Makihara, K.
Actuators, Vol. 14, No. 4, Article No. 143 (Open Access)
[2024] Magnetostrictive-based Induced Current Inversion and Amplification: Semi-Active Vibration Suppression for Multiple-Degree-of-Freedom Flexible Structures
Li, A., Kobayashi, Y., Hara, Y., Otsuka, K., Makihara, K.
Journal of Sound and Vibration, Vol. 568, Article No. 118069 (Open Access)
[2024] Statistically-Oriented Optimal Control and Disturbance Prediction for Piezoelectric Semi-Active Vibration Suppression
Abe, M., Mishima, K., Hara, Y., Otsuka, K., Makihara, K.
IEEE Transactions on Control Systems Technology, Vol. 33, No. 1, pp. 165-180 (Open Access)
[2023] Semi-Active Switching Vibration Control with Tree-Based Prediction and Optimization Strategy
Abe, M., Hara, Y., Otsuka, K., Makihara, K.
Journal of Intelligent Material Systems and Structures Vol. 34, No. 4, pp. 440 – 460
[2022] Comprehensive Predictive Control for Vibration Suppression Based on Piecewise Constant Input Formulation
Takamoto, I., Abe, M., Hara, Y., Otsuka, K., Makihara, K.
Journal of Intelligent Material Systems and Structures Vol. 33, No. 7, pp. 901 – 917
[2020] Predictive Switching Vibration Control Based on Harmonic Input Formulation
Takamoto, I., Abe, M., Hara, Y., Nakahara, T., Otsuka, K., Makihara, K.
Sensors & Actuators: A. Physical Vol. 315, Article No. 112271
2. スマート宇宙構造を用いたエネルギ回収機構
月面では夜が14日も続くので、電力を太陽発電だけに依存できません。 そこで、当研究室は、振動する構造物からエネルギを回収する機構の開発に取り組んでいます。 宇宙利用に限らず、航空機、自動車をはじめ、供給電線に接続できない移動体全般に活用される技術の構築にも取り組んでいます。

参考文献
[2026] Improved Control Strategy for Magnetostrictive-Based Vibration Suppression Method Using Negative Capacitor in Flexible Multiple-Degree-Of-Freedom Structures
Li, A., Kobayashi, Y., Hara, Y., Makihara, K.
Journal of Sound and Vibration, Vol. 624, Article No. 119535 (Open Access)
[2026] Modified Charge Inversion and Extraction Switching Strategies for a Strongly Coupled Piezoelectric Vibration Energy Harvester
Zhou, M., Hara, Y., Tang, T., Mishima,K., Jia, Y., Shi, Y., Soutis, C., Kurita, H., Narita, F., Otsuka, K., Makihara, K.
Journal of Intelligent Material Systems and Structures, Vol. 37, No. 2, pp. 97-123 (Open Access)
[2025] Experimental Validation: Model Predictive Control-Based Strategy for Optimized Piezoelectric Energy Harvesting under Multimodal Vibration
Zhou, M., Hara, Y., Makihara, K.
Engineering Research Express, Vol. 7, No. 4, Article No. 0455a2 (Open Access)
[2025] Switch Control Strategy Adapted to Multimodal Vibration and Circuit with Fewer Diodes for Magnetostrictive Energy Harvesting
Kobayashi Y., Li A., Solehuddin, S. B., Koyano, K., Hara, Y., Makihara, K.
Smart Materials and Structures, Vol. 34, No. 6, Article No. 065039 (Open Access)
[2025] Model Predictive Control for Optimized Piezoelectric Energy Harvesting under Multimodal Vibration Excitation: Theory and Simulation
Zhou, M., Hara, Y., Makihara, K.
Engineering Research Express, Vol. 7, No. 2, Article No. 025526 (Open Access)
[2025] High-Fidelity Analysis and Experiments of a Wireless Sensor Node with a Built-In Supercapacitor Powered by Piezoelectric Vibration Energy Harvesting
Yamada, T., Asanuma, H., Hara, Y., Erturk, A.
Mechanical Systems and Signal Processing, Vol. 224, Article No. 112147 (Open Access)
[2025] Piezoelectric Flutter Energy Harvesting: Absolute Nodal Coordinate Formulation Model and Wind Tunnel Experiment
Mukogawa, T., Shimura, K., Dong, S., Fujita, K., Nagai, H., Kameyama, M., Shi, Y., Jia, Y., Soutis, C., Kurita, H., Narita, F., Hara, Y., Makihara, K., Otsuka, K.
Mechanics Research Communications, Vol. 143, Article No. 104351 (Open Access)
[2024] Energy Harvesting Using Magnetostrictive Materials: Effects of Material Anisotropy and Stress Multiaxiality
Liu, Y., Daniel, L., Lallart, M., Sebald, G., Makihara, K., Ducharne, B.
Sensors and Actuators: A. Physical, Vol. 366, Article No. 115017
[2023] Energy Harvesting Using Magnetostrictive Transducer Based on Switch Control
Li, A., Goto, K., Kobayashi, Y., Hara, Y., Jia, Y., Shi, Y., Soutis, C., Kurita, H., Narita, F., Otsuka, K., Makihara, K.
Sensors and Actuators: A. Physical, Vol. 355, Article No. 114303 (Open Access)
[2023] Investigation of Energy Harvesting Capabilities of Metglas 2605SA1
Liu, Y., Ducharne, B., Sebald, G., Makihara, K., Lallart, M.
Applied Sciences, Vol. 13, No. 6, Article No. 3477
[2023] Performance Evaluation of Magnetostrictive Small Wind Turbines using Fe-Co Alloy-based Clad Sheets
Ueno, T., Nakaki, T., Mukogawa, T., Dong, S., Kurita, H., Otsuka, K., Makihara, K., Narita, F.
Advanced Engineering Materials, Vol. 25, No. 19, Article No. 2300185
[2021] Adaptive and Robust Operation with Active Fuzzy Harvester under Nonstationary and Random Disturbance Conditions
Hara, Y., Otsuka, K., Makihara, K.
Sensors, Vol. 21, No. 11, p. 3913 (Open Access)
[2021] Piezoelectric Energy Enhancement Strategy for Active Fuzzy Harvester with Time-Varying and Intermittent Switching
Hara, Y., Zhou, M., Li, A., Otsuka, K., Makihara, K.
Smart Materials and Structures, Vol. 30, No. 1, Article No. 015038
[2020] Self-Sensing State Estimation of SSHI Energy Harvesters
Hara, Y., Yamamoto, Y., Makihara, K.
Journal of Intelligent Material Systems and Structures Vol. 31, No. 20, pp. 2326 – 2341
3. スペースデブリの宇宙構造物への衝突対策
宇宙構造では、スペースデブリや隕石との衝突は大きな課題です。JAXA(宇宙航空研究開発機構)と協力しながらスペースデブリ衝突時の緊急対策法の確立を目指しています。デブリ除去手法として注目されている導電性テザーシステムの耐デブリ構造研究も行っています。宇宙構造として注目されているインフレータブル構造のスペースデブリ衝突や隕石衝突の耐久性について、大型衝突実験を用いた実験実証という観点から研究を進めています。

参考文献
[2025] Partial Heat Curing Enhancing Space Debris Shielding Performance in Multi-Layered Inflatable Structures
Takahashi, H., Sugiyama, Y., Kuzuno, R., Hasegawa, S., Ohtani, K., Hara, Y., Makihara, K.
Journal of Space Safety Engineering, Vol. 12, No. 2, pp. 253-265
[2025] Shape Keepers of Hollow Cylindrical Electrodynamic Tethers for Space Debris Removal
Hara, Y., Kuzuno, R., Takahashi, H., Sugiyama, Y., Kikuji, Y., Ohtani, K., Hasegawa, S., Makihara, K.
AIAA Journal of Spacecraft and Rockets, Vol. 62, No. 4, pp. 1433-1444 (Open Access)
[2021] Assessment of Space Debris Collisions Against Spacecraft with Deorbit Devices
Tomizaki, H., Kobayashi, R., Suzuki, M., Karasawa, N., Hasegawa, S., Makihara, K.
Advances in Space Research, Vol. 67, No. 5, pp. 1526-1534
[2020] Damage of Twisted Tape Tethers on Debris Collision
Uwamino, Y., Fujiwara, M., Tomizaki, H., Ohtani, K., Makihara, K.
International Journal of Impact Engineering Vol. 137, Article No. 103440
4. 火星月面基地テンセグリティ構造
棒と糸により構成される超軽量可変構造「テンセグリティ」を用いた新たな宇宙構造物の創成を行なっています。 テンセグリティは高強度、軽量性、耐衝撃性、高収納性を持つ次世代構造であり、月面基地や火星基地、惑星探査機としての運用が期待されています。 当研究室では実験と理論の両面からテンセグリティ宇宙構造の実現に取り組んでいます。

参考文献
[2024] Establishment of Iterative Modeling Method for Spherical Tensegrity Structure Using Rotational Symmetry and Regular Polyhedron Configuration
Mori, E., Matsumoto, Y., Kawabata, N., Otsuka, K., Makihara, K.
Mechanics Research Communications, Vol. 135, Article No. 104217 (Open Access)
5. 宇宙構造物の振動に基づく構造ヘルスモニタリング
宇宙や空中にいる運用中の航空宇宙機の健康状態を監視する挑戦をしています。 振動に基づく構造ヘルスモニタリングは人の手に頼らず、データ解析に基づく検査方法の一つです。 検査のために基地に戻ったり、宇宙飛行士や技術者の手に頼ったりする必要がなく、経済的な方法です。 しかし、航空宇宙機に振動センサの配線敷設やセンサを動かすための電源確保は非常に困難です。 本研究室では、機能性材料(スマート材料)を用いて、センサ要らず、電源要らずの構造ヘルスモニタリング手法を提案しています。
参考文献
[2026] Parameter Estimation of Chain-link Structures Based on Incomplete Measurements using Subspace System Identification
Tang, T., Zhou, M., Hara, Y., Makihara, K.
Journal of Dynamic Systems, Measurement, and Control, Vol. 148, No. 1, Article No. 011016 (Open Access)
[2024] Semi-Active Structural Excitation Method to Realize Energy-Saving On-Orbit Identification
Hara, Y., Tang, T., Otsuka, K., Makihara, K.
Journal of Evolving Space Activities, Vol. 2, Article No. 125 (Open Access)
[2024] System Identification of Multi-Degree-of-Freedom Structures Subject to Unmeasurable Periodic Disturbances Using a Piezoelectric Device
Tang, T., Hara, Y., Zhou, M., Otsuka, K., Makihara, K.
Journal of Evolving Space Activities, Vol. 2, Article No. 158 (Open Access)
[2023] Low-Energy-Consumption Structural Identification with Switching Piezoelectric Semi-Active Input
Hara, Y., Otsuka, K., Makihara, K.
Mechanical Systems and Signal Processing, Vol. 187, Article No. 109914 (Open Access)
[2023] Strategy for Performance Improvement in Piezoelectric Semi-Active Structural System Identification by Excluding Switching Failures using Pseudo-State Feedback
Hara, Y., Tang, T., Otsuka, K., Makihara, K.
Mechanical Systems and Signal Processing, Vol. 187, Article No. 109906
[2022] Self-Sensing Method for Semi-Active Structural Identification by Removing Piecewise Bias from Piezoelectric Voltage
Hara, Y., Tang, T., Otsuka, K., Makihara, K.
Sensors & Actuators: A. Physical, Vol. 347, Article No. 113907