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Control of Gilbert damping using magnetic metamaterials
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We studied, from a theoretical standpoint, the Landau-Lifshitz-Gilbert equation of magnetic metamaterials
consisting of magnetic nanoparticles. The dynamics of the metamaterials magnetization was numerically
investigated in order to elucidate the mechanism of Gilbert damping. Our results revealed that the interacting
dipole field synchronized to the magnetization precession causes the variation in the effective Gilbert damping
factor. Nevertheless, we found that a metamaterial with a specific structure has almost the identical effective
Gilbert damping factor, although the interacting dipole field increases. This work demonstrates that the effective
Gilbert damping factor can be analytically predicted and designed using the structure factors in magnetic
metamaterials, opening an avenue to a new relationship between metamaterials and spintronics.
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I. INTRODUCTION

Artificial structures consisting of subunits much smaller
than the wavelength of electromagnetic waves are called
metamaterials.1 As well as split-ring resonators using nonmag-
netic metals,2,3 magnetic metamaterials consisting of magnetic
metal, for example, nickel, cobalt, or iron, nanoparticles
are one of the candidates for obtaining magnetic resonance
and tailoring magnetic permeability (μ) in the microwave
region.4 The μ represents how strong the material respond
to dynamic magnetic field. Therefore, a clear understanding of
the magnetization dynamics of magnetic metamaterials under
a dynamic magnetic field is crucial for tailoring μ.

Damping is a key issue to understanding the dynamics
of magnetization. The magnetization damping can be repre-
sented using the so-called Gilbert damping factor α, which
is phenomenologically introduced in the motion equation
of magnetization or spin, i.e., the Landau-Lifshitz-Gilbert
(LLG) equation.5 However, the physical origin of magne-
tization damping represented by α has only recently been
addressed. This address is mainly motivated by spin damping
in spintronics,6–10 which utilize the spins of electrons for
information delivery and storage, because spin damping is
strongly related to the spin reversal time. Because μ strongly
depends on α, the control of α is important also for magnetic
metamaterials.

Previously we reported the preparation of magnetic meta-
materials consisting of nickel nanoparticles and magnetic
resonance around 10 GHz due to the electron spins [electron
magnetic resonance (EMR)] in the particles.11–13 Measured
EMR signals were theoretically considered and μ of the meta-
materials was numerically evaluated by precisely taking the
dipole field among nanoparticles into consideration.14,15 These
studies pointed out a limitation of the static approximation
based on Kittel’s equation16 and the importance of the dynamic
approximation for evaluating μ of magnetic metamaterials.
Nevertheless, the physics of the dynamic approximation and
Gilbert damping in the metamaterials was unclear.

In this paper, we report theoretical considerations of the
LLG equation in the magnetic metamaterials and numerical

calculation of the magnetization dynamics in order to shed
light on the physics of the dynamic approximation and Gilbert
damping in the magnetic metamaterials. Our results reveal that
an interacting dipole field, which is synchronized to the pre-
cession of magnetization, causes the variation in the effective
Gilbert damping factor. Nevertheless, it is noticeable that a
metamaterial consisting of dual-sized particles has almost the
same effective Gilbert damping factor with that of single-sized
particles, even though there is an increase in the interacting
dipole field. These results indicate that the interacting dipole
field intricately influences the effective Gilbert damping factor
through the structure factors. Otherwise, the effective Gilbert
damping factor increases monotonically with the dipole field.
This work demonstrates that the effective Gilbert damping
factor can be analytically predicted and designed using the
structure factors in magnetic metamaterials. Several possible
applications of damping-controlled magnetic metamaterials
are discussed.

II. DESCRIPTION OF ANALYTICAL MODEL

A. An isolated single nanoparticle

Let us suppose an isolated spherical magnetic particle. The
basic formula of the LLG equation of magnetization m =
(mx,my,mz) is given as

dm
dt

= −γ (m × H) + α

ms

(
m × dm

dt

)
(1)

under the effective field H = (Hx,Hy,Hz). α is the Gilbert
damping factor. γ is the gyromagnetic ratio. ms is saturation
magnetization. Equation (1) is reduced to

dmx

dt
= −γ (myHz − mzHy) + α

ms

(
my

dmz

dt
− mz

dmy

dt

)
,

(2a)
dmy

dt
= −γ (mzHx − mxHz) + α

ms

(
mz

dmx

dt
− mx

dmz

dt

)
,

(2b)
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dmz

dt
= −γ (mxHy − myHx) + α

ms

(
mx

dmy

dt
− my

dmx

dt

)
.

(2c)

We assume here that the external magnetic field for
resonance of an isolated magnetic particle, H0, is applied in
the z direction, and the irradiation field, which is circularly
polarized electromagnetic wave, is applied in the xy plane. In
the resonant state, the magnetization mz is identical. The LLG
equation is thus rewritten as

dmx

dt
= −γ (myH0 − mzHy) − α

ms

mz

dmy

dt
, (3a)

dmy

dt
= −γ (mzHx − mxH0) + α

ms

mz

dmx

dt
, (3b)

dmz

dt
= 0. (3c)

To differentiate Eqs. (3a) and (3b), the following expres-
sions are obtained:

d2mx

dt2
= −γ

(
dmy

dt
H0 − mz

dHy

dt

)
− α

ms

mz

d2my

dt2
, (4a)

d2my

dt2
= −γ

(
mz

dHx

dt
− dmx

dt
H0

)
+ α

ms

mz

d2mx

dt2
. (4b)

Substituting Eqs. (3b) and (4b) into Eq. (4a), the expression
of the LLG equation is reduced into the motion equation of
the forced oscillation:(

1 + α2m2
z

m2
s

)
d2mx

dt2
+ 2αγH0mz

ms

dmx

dt
+ γ 2H 2

0 mx

= γ 2mzH0Hx + γmz

dHy

dt
+ αγm2

z

ms

dHx

dt
. (5)

The right-hand side of Eq. (5) consists of functions Hx =
H1 cos ωt and Hy = H1 sin ωt , where H1 and ω represents the
amplitude and angular frequency of the irradiation magnetic
field, respectively. By using the trigonometric synthesis for-
mula, the right-hand side simply becomes a single term of a

cosine function. As a result, Eq. (5) is rewritten as(
1 + α2m2

z

m2
s

)
d2mx

dt2
+ 2αω0mz

ms

dmx

dt
+ ω2

0mx

= γmz

√
(ω0 + ω)2 + α2m2

zω
2

m2
s

H1 cos ωt, (6)

where the right-hand side is a periodic force term from the
irradiated magnetic field.

The equilibrium state of the forced oscillation is given by a
particular solution of Eq. (6) as

mx = A cos (ωt + δ) , (7)

where

A = γmz

√
(ω0 + ω)2 + α2m2

zω
2/m2

sH1√(
ω2

0 − ω2
)2 + 4�2ω2

,

(8)

δ = tan−1

(
2�ω

ω2
0 − ω2

)
, � = αmz

ms

, ω0 = γH0.

In the EMR, the particular solution as Eq. (7) forms the
Lorentz-type absorption peak. From the peak profile A(ω)2

as a function of ω, the line width � of the peak is given by

�

ω0
=

√
1 − 2α2 + 2α

√
1 − α2 −

√
1 − 2α2 − 2α

√
1 − α2,

� 2α, (9)

where
√

1 + 2α � 1 + α in case of α � 1.

B. Magnetic metamaterials

Let us move on to magnetic metamaterials consisting of
magnetic nanoparticles, as shown in Fig. 1. In the model 1
[Fig. 1(a)], the magnetic nanoparticles having identical particle
volume are aligned in a simple cubic lattice. r0 corresponds to
the interparticle spacing. H0 is applied in the z direction. The
dipole interaction among nanoparticles influences not only to
the dc resonance field but also to the elements of the ac irradi-

z z z

(a) Model 1 (b) Model 2

x

y

x

y

x

y

H0 H0 H0r0

(c) Model 3

FIG. 1. Illustrations of magnetic metamaterials: (a) Model 1, (b) Model 2, and (c) Model 3. A 9 × 9 × 5 simple cubic lattice with the
lattice spacing r0 is considered. Model 1 consists of single-sized particles with 8 nm in diameter, which correspond to the magnetic moment
m = 1.3 × 10−16 emu. Contrastingly, randomness of the magnetization magnitude was introduced in Models 2 and 3. These models are
composed of dual-sized particles, in which the large and small particles respectively correspond to the magnetic moment m = 2.6 × 10−16 emu
and m = 1.3 × 10−16 emu. In Model 2, the large and small particles are alternately arranged just similar to an NaCl-type structure. On the
other hand, in Model 3, the large and small particles randomly occupy a lattice point.
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ation field. The magnetic fields in Eq. (5) are thus replaced by

H ′
x = Hx + HD

x , (10a)

H ′
y = Hy + HD

y , (10b)

H ′
0 = H0 + HD

z . (10c)

When we suppose that the precession of the magnetization of
a magnetic metamaterial is uniform as in the Kittel mode, the
effective medium approximation can be applied as m � 〈m〉
for calculations of the dipole field, HD . In this case, HD is
given by the linear combination of elements in the magnetic
vector, 〈m〉, and HD is represented by

HD
x = 〈mx〉

∑
i

−r2
i + 3x2

i

r5
i

+ 〈my〉
∑

i

3xiyi

r5
i

+〈mz〉
∑

i

3zixi

r5
i

, (11a)

HD
y = 〈mx〉

∑
i

3xiyi

r5
i

+ 〈my〉
∑

i

−r2
i + 3y2

i

r5
i

+〈mz〉
∑

i

3yizi

r5
i

, (11b)

HD
z = 〈mx〉

∑
i

3zixi

r5
i

+ 〈my〉
∑

i

3yizi

r5
i

+〈mz〉
∑

i

−r2
i + 3z2

i

r5
i

. (11c)

The coordination of the i-th nanoparticle is represented
by xi , yi , and zi . The distance to the i-th nanoparticle is
ri =

√
x2

i + y2
i + z2

i . Equation (5) is rewritten as

(
1 + α2〈mz〉2

m2
s

)
d2〈mx〉

dt2
+ 2αγ

(
H0 + HD

z

)〈mz〉
ms

d〈mx〉
dt

+ γ 2
(
H0 + HD

z

)2〈mx〉

= γ 2〈mz〉
(
H0 + HD

z

)
Hx + γ 〈mz〉dHy

dt
+ αγ 〈mz〉2

ms

dHx

dt
+ γ 2〈mz〉

(
H0 + HD

z

)
HD

x + γ 〈mz〉
dHD

y

dt
+ αγ 〈mz〉2

ms

dHD
x

dt

(12)

If the metamaterial is considered as a thin film, coordination zi becomes zi � 0. Equation (12) is written as(
1 + α2〈mz〉2

m2
s

)
d2〈mx〉

dt2
+ 2αγ (H0 + Czz〈mz〉)〈mz〉

ms

d〈mx〉
dt

+ γ 2(H0 + Czz〈mz〉)2〈mx〉

= γ 2〈mz〉(H0 + Czz〈mz〉)Hx + γ 〈mz〉dHy

dt
+ αγ 〈mz〉2

ms

dHx

dt
+ γ 2〈mz〉(H0 + Czz〈mz〉)Cxy〈my〉

+
(

γCxy〈mz〉 + αγCxx〈mz〉2

ms

)
d〈mx〉

dt
+ γ 2〈mz〉(H0 + Czz〈mz〉)Cxx〈mx〉 +

(
γCyy〈mz〉 + αγCxy〈mz〉2

ms

)
d〈my〉

dt
,

(13)

where

Cxx =
∑

i

wi

−r2
i + 3x2

i

r5
i

, Cxy =
∑

i

wi

3xiyi

r5
i

,

(14)

Cyy =
∑

i

wi

−r2
i + 3y2

i

r5
i

, Czz =
∑

i

wi

−1

r3
i

.

wi corresponds to the weight parameter defined by the volume
of the nanoparticles, enabling us to treat dual- or multisize
particle systems as shown in Figs. 1(b) and 1(c). Coefficients
described by Eq. (14) are structure factors of magnetic
metamaterials.

For Eq. (13), in the case of equilibrium state of precession,
elements 〈mx〉 and 〈my〉 satisfy the following relations:

〈my〉 = − 1

ω

d〈mx〉
dt

,
d〈my〉

dt
= ω〈mx〉. (15)

Taking these relations into account, Eq. (13) is expressed for
a single variable 〈m〉 ≡ 〈mx〉 and written as

(1 + α2)
d2〈m〉
dt2

+ 2αωD

d〈m〉
dt

+ ω2
D〈m〉

= γms

(
ωDHx + dHy

dt
+ α

dHx

dt

)

+ γms

(
Cxy + αCxx − ωDCxy

ω

)
d〈m〉
dt

+ γms(ωCyy + αωCxy + ωDCxx)〈m〉, (16)

where the approximation for 〈mz〉 � ms is used. We changed
the expression to the time domain using a variable transforma-
tion of γ (H0 + Czzms) = ωD , Kittel’s equation.

Equation (16) is analogous to Eq. (5), which is the equation
of forced oscillation. However, the second and third terms in
the right-hand side of Eq. (16) have no counterpart in Eq. (5).
We should note here that the effective medium approximation
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is quite useful. The second and third terms in the right-hand
side of Eq. (16) become the equivalent rank of the derivation
for the second and third terms in the left-hand side and can be
moved to the left-hand side. Finally, Eq. (16) becomes

(1 + α2)
d2〈m〉
dt2

+ 2α′ω′
D

d〈m〉
dt

+ ω′
D

2〈m〉 = f cos ωt,

(17)

where

ω′
D =

√
ω2

D − γms(ωCyy + αωCxy + ωDCxx), (18)

2α′ω′
D = 2αωD − γms

(
Cxy + αCxx − ωDCxy

ω

)
. (19)

For magnetic metamaterials, we expect the magnetic
permeability to be controlled. The magnitude of magnetic
permeability is determined by A(ω)2. Namely, the control
of α′ brings about the control of the magnetic permeability
μ = 1 + χ , where χ is the magnetic susceptibility. An analogy
between Eqs. (6) and (17) allows us to express the line width
of the EMR signal in the magnetic metamaterials as

�′

ω′
D

� 2α′. (20)

Equations (18)–(20) reveal that the line width can be described
using the structure factors given as Eq. (14). Effective
Gilbert damping can thus be designed analytically by internal
structures of the metamaterials.

III. NUMERICAL SIMULATION

Equation (17) shows that the state of the magnetic pre-
cession is strongly affected by the summation of the dipole
field in structure factors as described by Eq. (14). The dipole
field is dominated by the distance between particles and by the
magnitude of the magnetic moment in the particle. Previously
we studied the effect of the distance between particles.15

In this calculation, we focus our attention on the influence
of the magnitude of the moment. In order to visualize the
behavior of the analytical model, we carried out the numerical
calculation for a magnetic metamaterial consisting of magnetic
nanoparticles, as shown in Figs. 1(a)–1(c).

The nanoparticles are arranged in a Nx × Ny × Nz simple
cubic lattice with the lattice spacing r0. The magnetic dipole
interaction among nanoparticles depends on the distance r0 and
the number of particles involved in the summation

∑
|±i|<Nx

[see Eq. (11a)]. In the case of r0 = 10 nm,
∑

|±i|<Nx=9 is very
similar to

∑
|±i|<Nx=10 in terms of the dipole field. Therefore,

to save the resource in the numerical calculation, we chose the
size of the nanoparticle array to be Nx = Ny = 9. We assume
Nz = 5 in the present calculation.

Model 1 as shown in Fig. 1(a) consists of single-sized
particles with 8 nm in diameter, which correspond to
the magnetic moment m = 1.3 × 10−16 emu. Contrastingly,
randomness of the magnetization magnitude was introduced in
model 2 [Fig. 1(b)] and model 3 [Fig. 1(c)]. These models are
composed of dual-sized particles, in which the large and small
particles, respectively, correspond to the magnetic moment
m = 2.6 × 10−16 emu and m = 1.3 × 10−16 emu. In model 2,
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FIG. 2. (Color online) Line profile of the susceptibility χ in field
sweep with (a) Model 2 and (b) Model 3. Lattice constant r0 is set
to be r0 = 10 nm (filled circles and filled triangles), 12 nm (open
triangles), 15 nm (open circles and filled squares) and 20 nm (crosses
and open squares).

the large and small particles are alternately arranged just
similar to an NaCl-type structure. On the other hand, in model
3, the large and small particles randomly occupy a lattice
point.

In the numerical calculation, the mirror boundary condition
is applied in x and y directions, and the open boundary
condition is applied in the z direction. These settings reproduce
magnetic metamaterials in the form of a thin film including
the magnetic nanoparticles. The LLG equation of each particle
is directly solved using the forward difference method and
taking account of the dipole interaction among the magnetic
particles. γ and α are assumed to be 1.76 × 107 Oe−1s−1 and
0.010, respectively.

Figure 2 shows the peak profiles of magnetic susceptibility
in a field sweep. The applied field is normalized by H0, where
H0 represents the resonant field of the isolated nanoparticle
at the frequency ω0/2π = 9 GHz. In the case of model 2
[Fig. 2(a)], r0 is varied in the range of r0 = 10 nm (filled
circles), 15 nm (open circles), and 20 nm (crosses). As r0

decreases, the maximum value of χ increases. This is brought
about by an increase in the magnetic moment per unit volume.
The apparent resonant field H ′

0, where H ′
0 is defined as the

zero cross point of χ , increases with a decrease in r0. The
increase in H ′

0 is traced back to an increase in the magnetic
dipole field among nanoparticles.15 We see that the curves of
the peak profiles in Fig. 2(a) are smooth.
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Contrastingly, in the case of model 3 with r0 = 10 nm (filled
triangles), 12 nm (open triangles), 15 nm (filled squares), and
20 nm (open squares) [Fig. 2(b)], the peak profiles are not
smooth curves. The value of χ depends on the randomization
procedure in this calculation. Each data point is thus given by
the average of three trials except near the resonance field. Near
the resonant state, the number of trials increases to ten. The
maximum χ is smaller than that in model 2. For the resonance
field that is given by the crossing point at χ = 0, particles
with r0 = 15 and 20 nm indicate a similar value in comparison
with models 2 and 3. However, in the case of r0 = 10 nm,
the resonance field of model 3 is slightly smaller than that of
model 2. On the other hand, the maximum (or minimum) χ

of model 3 is drastically smaller than that of model 2 when r0

decreases to 10 nm.

IV. DISCUSSION

The calculated line profiles of models 2 and 3 at r0 = 10 nm
are simultaneously plotted in Fig. 3. Calculated data points are
fitted by the function of A2, where the amplitude A is defined
in the particular solution as the form of Eq. (7). The fitting to
Eq. (20) brings about an effective Gilbert damping factor α′.
As a control, we carried out numerical calculation of model
1 with single-sized particles, although the line profile is not
shown in this paper. Obtained values of α′, as well as the
resonant field (H ′

0/H0), are listed in Table I.
When the isolated particles are assembled into model 1, α′

increases from 0.010 to 0.020. This increase is caused by the
magnetic dipole field among particles, i.e., demagnetization
field in a film, corresponding to the simple dipole broadening.17

Indeed, as shown in Table I, H ′
0/H0 increases in model 1. The

models with the dual-sized particle system (models 2 and 3)
show an additional increase in H ′

0/H0. Obviously, the total
magnetic moment in the dual-sized particles system becomes
larger than that in the single-sized particles system, leading
to an increase in the strength of the dipole field; this brings
about the additional increase in H ′

0/H0. Table I shows that
H ′

0/H0 is mostly similar between models 2 and 3; the dipole
field is almost the same in these models. However, Table I
demonstrates how an increase in the dipole field affects α′

-30

-20

-10

 0

 10

 20

 30

 1.2  1.3  1.4  1.5  1.6  1.7  1.8

S
us

ce
pt

ib
il

it
y 

χ

Applied field (Hext / H0)

Model 3 (α’ = 0.0950)

Model 2 (α’ = 0.0235)

FIG. 3. (Color online) Comparison between Model 2 (green line
and blue circles) and Model 3 (pink line and red triangles) when
r0 = 10. Effective Gilbert damping factor α′ is obtained from the
fitting curves.

TABLE I. Model, particle size, distribution, the effective Gilbert
damping factor α′, and the resonant field H ′

0/H0.

Model Particle size Distribution α′ H ′
0/H0

isolated particle – – 0.010 1.000
Model 1 single – 0.020 1.218
Model 2 dual periodic 0.024 1.515
Model 3 dual random 0.095 1.480

differently in models 2 and 3. As a result, the α′ of model 2
is much smaller than that of model 3, even though H ′

0/H0 of
model 2 is almost the same as that of model 3.

Analytically, this discrepancy between models 2 and 3 can
be understood using Eqs. (17)–(19). The static dipole field
influences the ωD through Czz, which is the major factor of
the peak shift in H ′

0/H0 expressed by the Kittel equation.
In the static Kittel equation, a shift in H ′

0/H0 due to the
dipole field does not bring about a change in line width, i.e.,
in α′. Contrastingly, a dynamic approximation based on the
LLG equation shown as Eq. (17) indicates that an increase
in the dynamic dipole field, i.e., H ′

0/H0, accompanies an
apparent broadening of line width because of the second term
(damping term) of the left-hand side. The dynamic dipole field
is characterized by Cxx , Cyy , and Cxy . These structure factors
give rise to the peak shift in the H ′

0 = ω′
D/γ . As shown in

Eq. (18), an increase in Cxx , Cyy , and Cxy brings about a
decrease in ω′

D . On the other hand, how these structure factors
affect the α′ is described in Eq. (19); we notice here that an
increase in Cxx and Cyy causes a decrease in α′ but that in Cxy

results in an increase in α′. α′ is influenced intricately by Cxx ,
Cyy , and Cxy . In other words, α′ can be analytically predicted
and designed using the structure factors.

In the magnetic metamaterials, the structure factor is
spatially strengthened or weakened like an interference. It is
worth mentioning here that the spacial variation of magnetic
moments give rise to the variation in α′, which is very similar to
the variable α of magnetic metals owing to the spatial variation
of spins.18,19 As well as the dipole field among nanoparticles,
ac current and spin current could be the interacting field leading
to the manipulation of the damping factor through electric
current. This work introduces a new relationship between
metamaterials and spintronics. Another important point in the
dynamic approximation is the cooperation of a dipole field
with the magnetization precession; the synchronization of the
vibrating dipole field to the magnetization precession is the
origin of the variation in α′. This synchronization allow us
to justify effective medium approximation and, therefore, to
derive analytically α′ of magnetic metamaterials. Otherwise,
numerical calculation should be used to extract α′.

V. CONCLUSIONS

We have studied theoretically the LLG equation in magnetic
metamaterials and numerically the dynamics of the magne-
tization. Our results revealed that one can control Gilbert
damping and magnetic permeability through the design of
the internal structures of magnetic metamaterials. The origin
of the variation in the effective Gilbert damping factor is the
interacting field synchronized to the magnetization precession.
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The increase in interacting dipole field basically leads to an
increase in the effective Gilbert damping factor. Nevertheless,
it is found that a metamaterial consisting of dual-sized particles
has almost the same effective Gilbert damping factor with that
of single-sized particles although an increase in the interacting
dipole field. This work demonstrates that the effective Gilbert
damping factor can be analytically designed using the structure

factors in magnetic metamaterials, opening an avenue to a new
relationship between metamaterials and spintronics.
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