

近況報告

機構の最近の活動状況

電気通信研究機構長中 沢 正隆

東日本大震災は、数多くの人命を奪い、東日本地域に甚 大な被害をもたらし、我々に多くの教訓を残しました。便利な 日常生活を支えるネットワークに甚大な被害をもたらし、被災者 の避難指示、救難、安否確認、生活支援等、被災地の様々 な活動に多大な支障をきたしたことは、発災後3年近くたった 今でも、我々の記憶から薄れることはありません。

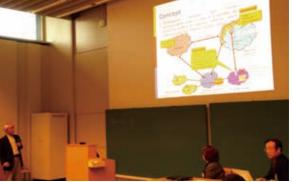
これを契機に、私たち情報通信技術の研究開発に携わる者は、災害時に必要な通信が確保できる耐災害ICT技術を情報通信システムに実装しなければいけないと心に深く刻み込みました。発生が危惧される東海・東南海地震、首都直下地震等への備えとして、耐災害性に優れた情報通信システムを早期に開発し、その社会実装に貢献することは、被災地域の中核大学である東北大学に課せられた重要な使命であります。

そうした強い思いから、平成23年10月1日に、電気通信研究所が中心となって電気通信研究機構を設立しました。当機構の設立とその趣旨等は、本NEWSの創刊号をご参照頂ければ幸いです。ここでは、設立から4年目となります機構の取り組み状況につきまして、近況をご紹介させて頂きます。

機構が推進する耐災害ICT研究開発プロジェクトとして、本号でも紹介致します総務省の「情報通信の耐災害性強化のための研究開発プロジェクト」への取り組みが挙げられます。本プロジェクトでは、11の研究開発課題に参加し、約14億円の受託契約総額の研究を推進しております。また、JSTの減災・復興プロジェクトへの研究提案を行い、「災害対応支援を目的とする防災情報のデータベース化の支援と利活用システムの研究開発」及び「超音波血管・血流透視装置の開発」の研究テーマが採択されています。NTT等の企

業との耐災害ICTに関する共同研究にも取り組んでおります。上記の研究テーマの成果として、70件以上の招待講演、招待論文、査読付き論文等が報告されています。

平成24年1月に独立行政法人情報通信研究機構 (NICT)と締結しました包括的な「連携・協力に関する協定」及び「耐災害性強化のための情報通信技術の研究に関する基本協定」に基づき、平成24年4月1日には東北大学片平キャンパスに同機構の耐災害ICT研究センターが設立されました。同センターは昨年末に建設工事が完了し、本年3月3日に開所され、最先端のテストベッドのもと耐災害ICT研究開発のための世界有数の研究拠点としてスタート致します。当機構では、産官学の密接な連携のもと、このテストベッドを有効利活用し、耐災害ICT研究を積極的に推進するとともに、その成果の社会実装に全力で取り組む所存です。


本機構の活動は、機構のホームページで情報発信するとともに、東北大学が主催するイノベーションフェア、災害復興新生研究機構シンポジウム、NICT主催の耐災害ICT研究シンポジウム等でも発表しております。また、平成25年7月には、電気通信研究機構シンポジウムを開催し、関連自治体、民間企業、公的研究機関、大学等の関係者に対し、上記の研究プロジェクトの成果発表を行いました。その様子を本号の表紙の挿入写真として掲載しています。本号の表紙には、震災からの復興に向けて、被災地域が活気に溢れている様子を仙台青葉まつりの写真で表現し、我々も産官学連携で被災地域の復興をしっかり後押ししたいとの強い思いを示しています。

今後とも、皆様のご支援とご協力をよろしくお願い申し上げ

ETPSC'2013 平成25年9月27日

昨年9月27日(金)に、ベルリンエ科大学において、 ETPSC'2013 (Workshop on Emerging Technologies and Trends for Public Safety Communication) が開催 されました。本会議は、欧州委員会のプロジェクトである ABSOLUTE (Aerial Base Stations with Opportunistic Links for Unexpected & Temporary Events) が主催し た耐災害ICT技術に関する第一回目のワークショップです。電 気通信研究機構からは、安達教授と岩月特任教授が招待講演 とパネルディスカッションを、加藤 (寧) 教授が招待論文の発表 を行い、電気通信研究機構の耐災害ICTへの取り組みと総務 省「情報通信の耐災害性強化のための研究開発プロジェクト」 での安達教授と加藤教授の研究成果が紹介され、注目を浴び ました。両教授の講演の様子はABSOLUTEのホームページ (http://www.absolute-project.eu/news/workshops) に掲載されています。次回のワークショップは、6月にシド ニーで開催されるICC (International Conference on Communications)と併設で開催されます。 (岩月 勝美)

IEEE R10-HTC2013 in Sendai 平成25年8月26日~29日

IEEE Region 10が主催する国際会議Humanitarian Technology Conference 2013が昨年8月26~29日の4日間東北大学川内北キャンパスで開催されました。本会議は "Lessons learned from Japan's 2011 earthquake and other natural disasters around the world"をテーマに掲げ、耐災害ICT技術から災害用ロボット、エネルギー、災害医療などの幅広い分野から63件の発表が行われました。会期中には津波の被害を受けた石巻・女川の沿岸部の視察も行

われました。会議にはIEEEの前会長、現会長、次期会長の3名をはじめ、国内外から200名を超える参加者が集まり、2012年のHurricane Sandyの影響もあってアメリカを中心に海外からも関心の高さが伺われました。次回のHTCは2014年にチェンナイ(インド)で開催される予定です。 (廣岡 俊彦)

電気通信研究機構シンポジウム 平成25年7月23日

昨年7月23日(火)に、東北大学片平キャンパスさくらホールにおいて、東北大学電気通信研究機構シンポジウム "耐災害ICTによる東北復興に向けて"を開催しました。本シンポジウムでは、"災害に強い情報通信ネットワークの構築を目指した産学官連携研究開発プロジェクト"等の成果について、関係自治体、民間企業、公的研究機関、大学等の皆様にご報告を行いました。グーグル株式会社による基調講演「災害と情報」に続き、宮城県及び日本電信電話株式会社から「復旧・復興に関する取り組み」について、また、独立行政法人情報通信研究機構から「耐災害ICT研究開発の取り組み」についての招待講演がありました。電気通信研究機構長による機構の概要説明の後、機構に参加している教授陣5名が個別テーマの研究成果を報告しました。いずれも熱心な質疑応答があり、約140名の参加を得て大盛況のうちに終了できました。

Orange訪問 平成25年9月30日

昨年、電気通信研究機構とOrange (旧フランステレコム)との間で協力覚書 (MoU)を締結し、耐災害ICT研究などの分野で、具体的な研究テーマについて協議を進めています。両者での具体的な共同研究等の実現を目指し、昨年9月30日(月)に、フランスラニオンにあるOrangeの研究所を訪問しました。耐災害ICT研究テーマに関連する研究者と意見交換し、連携・協力できる研究テーマについて議論しました。今後は、議論した研究テーマの具体化等、引き続き協議を進めていきます。 (岩月 勝美)

プロジェクト紹介

大規模災害時における 移動通信ネットワーク 動的通信制御技術の ための研究開発

東北大学大学院工学研究科 情報知能システム研究センター 特任教授 舘田あゆみ

東日本大震災のような大規模災害の 際、その直後から安否確認や被災状況 確認、避難指示等のための通信要求 が急激に増大し、音声通話やメール等 がつながりにくい状況が発生する。

そこで、NTT ドコモを代表とする東 北大学、NEC、富士通、日立ソューショ ンズ東日本のチームは、大規模災害発 生の当日(初動時)に、音声やメール 等の必要な通信が可能な限りつながり やすくなるよう、従来は困難であった通 信処理リソースの動的制御技術を研究 開発し、通信を受け付けるサーバの処 理能力を増強する仕組みを確立した。 (図1)

また、音声通信やメール以外にも必 要となる「災害時に役立つ情報通信 サービス」について、通信混雑状況下 でも十分な効果を発揮できる技術を研究 開発した。

東北大学は地域企業と共同で、災害 時に役立つ情報通信サービスに関して、 以下の観点から研究開発を行った。

(1) コグニティブ・メディア共有技術

この技術は、ネットワークの混雑状況 に応じて、伝達する情報の重要な部 分を切り出し送受信することで、ネット

ワークへの負荷を極小化す るものである(図2)。画像 処理技術および音声認識技 術を応用し、文字領域や文 字情報の抽出あるいはサー バに依存しない音声操作を 実現し、通信負荷の低減を 可能にした。

(2) 災害時に必要なアプリ ケーション

本研究開発では、東日本 大震災を教訓とした3つのア プリケーションを試作開発し た。中でも、被災地 (検案所) で収集したご遺体の歯科情 報を身元照合用のサーバに 安全に送信するアプリケーショ ンは、東日本大震災において、 実際に東北大学が提供し活 用した歯科情報によるご遺体 の身元確認システムを元にし ている。

(2) のアプリケーションに(1) の処理 方式を取り入れ、さらに災害時と平常時 にその有効/無効を切り替える機能を実 装し、通信混雑を模擬した環境下で動 作実験を行った。その結果、平常時と 同等の応答性能もしくは応答性能が低 下しても必要な処理を完了できることが 実証された。

図 1 通信処理リソースの動的制御技術

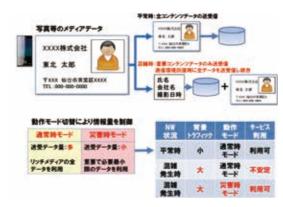


図2 コグニティブ・メディア共有技術

災害時に有効な 衛星通信ネットワーク の研究開発

東北大学電気通信研究所 教授 末松憲治

2011年3月11日の東日本大震災では、 東北地方太平洋沿岸を中心に大規模な 地震・津波被害を受け、地上系の通信 インフラを完全に喪失する事態が生じた。 このため、被災状況を外部に知らせるこ ともできず、しばらくの間、救援を得られ ない地域も存在した。このような状況下 で、外部との通信手段を確保することが できる衛星通信は、「ICT(Information and Communication Technology) 最

後の砦として、その重要性が再認識さ

しかし一方で、次のような問題点も明 らかになった。①被災地の通信ニーズに 応じた衛星システム用のVSAT (Verv Small Aperture Terminal) 機器の確 保が困難である。②大規模・長時間の 停電ではVSAT機器も作動停止してしま う。③衛星回線においても地上系と同様 に通信トラフィックが急増し、将来の大震

災においては輻輳状態となることが予想 される。

これらの諸問題の解決を図るために、 東北大学は、富山高専、スカパー ISAT (株)、(株)アイ・エス・ビー、(株) サイバー創研と共同で、平成24年度お よび平成24年度補正予算の総務省研究 開発「災害時に有効な衛星通信ネット ワークの研究開発 | に取り組んでいる。本

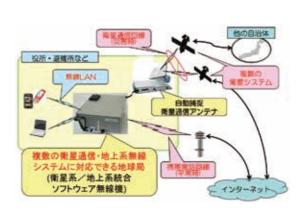


図 1 災害時に有効な衛星通信ネットワークのイメージ

研究課題では、被災地にお いてニーズに応じた衛星回線 を円滑に確保できる、①複数 の衛星システムに対応可能と するための技術、②地球局の 消費電力を低減させるため の技術、③衛星回線の収容 効率を向上させるための技 術を研究開発している。これ

> トへの接続を可能とする 民間衛星通信システム(スカ パー JSATのEsBirdシステ ム)と、防災行政無線ネット ワークへの接続を可能とする 自治体衛星通信機構 (LASCOM) の衛星通信シ ステムなどの複数の異なるシ ステムに対して、ソフトウェア の書き換えによりハードウェア を変更せずに対応できるマル

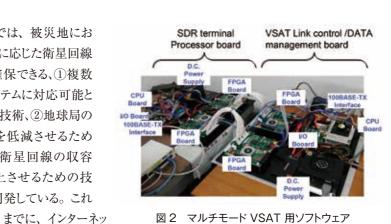


図2 マルチモード VSAT 用ソフトウェア 無線送受信機

チモードVSAT用ソフトウェア無線送受 信機を開発した。今後、東日本大震災 で被災した自治体や将来の大震災で被 災が想定される自治体と連携して、本研 究開発成果であるVSAT機器の実証実 験を行っていく予定である。

被災地への緊急運搬及び 複数接続運用が可能な 移動式 ICT ユニットに 関する研究開発

東北大学大学院工学研究科 教授 安達文幸

情報通信ネットワークは今や重要な 社会基盤になっている。2011年3月に 発生した東日本大震災は、高度情報 化社会になって初めて経験した大震災 であり、情報通信ネットワークが通信不 能や深刻な輻輳状態に陥り、被災地 域のみならず社会全体が混乱に陥って しまった。このようなことを二度と起こさ ないよう、東北大学はNTTコミュニケー

ションズ、富士 通と共に NTT に協力して、大 規模災害によっ て被災した通信 環境の素早い 復旧を可能とす る移動式 ICT ユニットネット ワークの研究開 発を進めている (図1)。

東北大学は、災害発生時に複数 ICT ユニットをすぐさま被災地に展開 するための技術(迅速な光接続技術、 ICT ユニット群周辺に無線アクセスネッ トワークをすばやく構築する無線技術、 そして ICT ユニットの運用管理技術) の研究開発に取り組んでいる。光接 続技術(中沢教授、廣岡准教授)に 関しては、自動適応等化機能により光

図 1 移動式 ICT ユニットネットワークの研究開発

ファイバ長や種別に依らず 100 Gbit/s DP-QPSK 信号を光ノードを介して伝 送することで速やかに相互接続するこ とを目指している。ICT ユニット群周辺 に展開する無線アクセスネットワークに 関しては、ネットワーク構成を決定する ための制御アルゴリズム (加藤 (寧) 教授、西山准教授) や通信環境の変 化に追従した無線リソース割り当て制 御アルゴリズム (安達教授) の確立を

プロジェクト紹介

目指している(図 2)。ICT ユニットの運用管理技術(木下教授、北形准教授)に関しては、ネットワーク物理構成の頻繁な変化に対応しつつ管理対象機器の物理接続の推定、制御、および自律的

な管理情報収集・障害診断・対策を可能とする知識型管理運用支援技術の確立を目指している。

被災地への緊急運搬及び複数接続 運用が可能な移動式 ICT ユニットが実 現すれば、情報通信ネットワークを被災 地へ展開して通信環境を素早く復旧で き、社会の大混乱や甚大な経済的損失 を避けることができる。

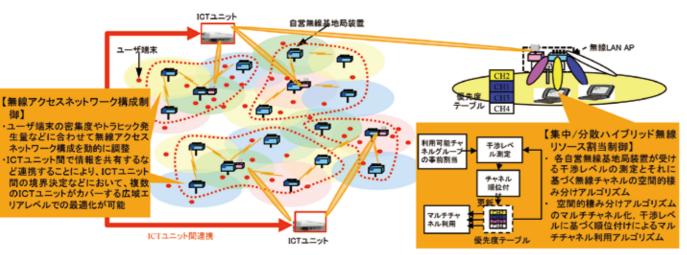


図2 ICT ユニット群周辺に展開する無線アクセスネットワーク

災害時避難所等における 局所的同報配信技術の 研究開発

東北大学サイバーサイエンスセンター 教授 曽 根 秀 昭 東北大学サイバーサイエンスセンター 准教授 後 藤 英 昭 NECクラウドシステム研究所 田 中 淳 裕

大規模災害時などに被災、通信の 混雑、停電等により通信インフラを利 用できなくなると、情報伝達が難しくな ります。平時でもイベント会場や主要駅 など、モバイル端末の密度が高い状況 ではネットワーク接続や通信が難しくな ります。

NECと東北大学が参画している総務 省委託研究「災害時避難所等における 局所的同報配信技術の研究開発」は、 スマートフォンなどのモバイル端末が多く集 まる環境で、端末間で通信して大規模な 情報配信を可能にするネットワーク構築技術を開発しました。

(1)<mark>多</mark>数の端末に対するデータ欠落 のない一斉配信

通常のマルチキャスト配信は、データ 欠落を許容する動画などにしか適用でき ません。新しく開発した DTN (データを 蓄積しながら転送して、ネットワークが不 安定でも高信頼にする方式) のマルチ

します。

(2) モバイル端末が過密でも通信速度の低下を抑制

過密環境でパケットの衝突(送出が同時になるために混信して届かなくなる現象)を回避する技術を開発しました。電波が届く範囲にある各端末が送信タイミングを自律分散的に制御するので、衝突を回避できて、データ量の大きい写真や動画も配信が可能になります。

図 1 DTN 端末実験

(3) 緊急情報を優先的に発信・拡散

優先度に応じて各端末の送信タイミングを決める技術によって、警報や応援要請など緊急性が高い情報を優先的に発信し拡散できます。端末の接続時に認証と同時に優先度の通知を受けるネットワーク制御技術には、eduroam(大学間の無線アクセスローミング)の研究開発を応用しています。図2に利用者優先度によるアクセスシステムを示します。

本技術を、災害情報配信・共有システムなどに適用し、安心・安全な情報配信ネットワークの実用化を目指します。さらに、大規模イベントの会場などの過密環境における情報配信システムへの適用など、快適な情報配信・共有の実現に貢献します。

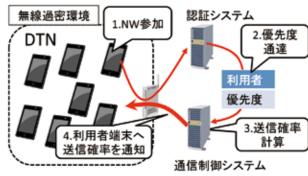


図2 利用者優先度によるアクセスシステム

孤立地域を上空からつなぐ 小型無人飛行機を活用した 無線中継システム

東北大学大学院情報科学研究科 教授 加藤 寧

東北大学大学院情報科学研究科 准教授

西山大樹

独立行政法人情報通信研究機構 ワイヤレスネットワーク研究所 ディベンダブルワイヤレス研究室 室長 浦 龍

大規模な災害が発生した際、通信ネットワークが寸断されて孤立した地域との 臨時通信回線を迅速に確保するための 方法の一つとして、滑走路が不要でラ ジコン操縦技術がなくても手軽に運用・ 自律飛行できる、小型の無人飛行機シ ステム (UAS) を活用した災害時無線中 継システムの活用が検討されている。現

図 1 青葉山新キャンパス造成地を飛行する小型 UAS

在、総務省から の委託を受け、 情報通信研究 機構(NICT) を中心として東 北大学を含む 国と民間の研究 機関が共同で、

UASを用いた無線通信システムの周波 数有効利用と高信頼化に向けた研究開 発を進めている。

2013年3月の耐災害ICTシンポジウム・デモンストレーションにおいては、NICTの耐災害ICT研究センターおよびワイヤレスネットワーク研究所が、東北大学の協力の下、青葉山新キャンパス造成地においてNICTが開発した小型軽量な無線中継システムを搭載した翼長2.8m、重さ5.9kgの固定翼型小型UASを飛行させ、造成地の旧クラ

ブハウス付近と工学 部中央生協付近を UAS 経由で中継する 実験に初めて成功した(図1)。

2013年7月には、 東北大学の加藤寧教 授・西山大樹准教授 の研究グループが、 NICTの協力の下、

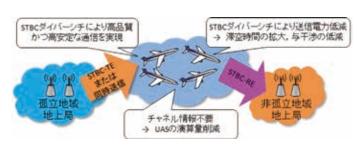


図 2 地上・UAS 連携マルチリンク MIMO 協調中継技術

前述の小型 UAS 経由でのスマートフォン間マルチホップメールリレーに成功し、 青葉山と片平の両キャンパス間(約3km)で最大1MBのファイル転送が可能であることを実証した。同グループは現在、複数の孤立地域間をより柔軟にカバーするために必要不可欠な複数UAS間リレー転送技術の研究開発に取り組んでいる。

さらに、東北大学の安達文幸教授の研究グループでは、UASを活用した無線中継システムのさらなる高品質化および高安定化を目指した研究開発に取り組んでいる。複数のアンテナを搭載する単一UASあるいは単一アンテナを搭載する複数 UASのグループによる時空間符号化(STBC)中継を行うことで、UASの構成を簡易に保ちつつ高品質かつ高安定な通信を実現する地上・UAS連携マルチリンク MIMO協調中継が可能になると期待されている(図2)。

Project report 研究最前線

次世代関数型 プログラミング言語 SML#の開発

東北大学 電気通信研究所 ソフトウェア構成(大堀)研究室

現代社会は、高性能な計算資源を 駆使して複雑なシステムを運用する高度 なソフトウェア群が基盤となっています。 このような社会が従来通りの高い安全 性・利便性を保ちながら発展していくた めには、高信頼・高性能なソフトウェア を高い生産性を持って開発する基盤技 術の確立が求められます。電気通信研 究所の大堀研究室では、ソフトウェア開 発の基盤であるプログラミング言語、およ び膨大なデータ処理の基幹をなすデータ ベースの基礎理論と実装技術の研究を 行なってきました。本稿では、それら基 礎研究の成果として現在完成しつつある 次世代高信頼プログラミング言語 SML#

ランク1多相性

レコード多相性

SQLとの統合

を紹介し、我が国のソフトウェア工学基 盤への貢献の可能性を展望します。

SML#はML系関数型言語の一つ です。ML系言語は、プログラムに潜在 する不整合を自動的に検出する型推論 機能により、動的言語に比肩する高い 生産性を保ちながら、高い信頼性を達 成できます。しかし、従来のML系言 語が基礎とする理論の限界により、OS や外部システムとの連携やマルチコア CPUのサポート等が困難である等の問 題があり実用言語として産業界に普及 するに至っていませんでした。SML#は、 20年を超えるML系言語の基礎研究に より、これらの困難を克服した次世代高

Standard MLを包摂 型安全性 Cとの相互運用性

東北大学電気通信研究所

大堀

研究室メンバー (平成26年1月現在): 教 授 大堀 淳 Ph.D (計算機科学) 助 教 上野 雄大 博士(情報科学) 助 教 森畑 明昌 博士(情報理工学)

研究室 Webページ: http://www.pllab.riec.tohoku.ac.jp/

信頼関数型言語です。ML系言語の

利点を保ちながら、C言語やシステムラ イブラリとの直接連携、データベース問 い合わせ言語 SQL とのシームレスな統 合などの機能を ML 系言語で初めて実 現しています。これら機能により、データ ベースを活用するビッグデータ解析やシス テム連携を必要とする組込みシステムな どのソフトウェア開発の生産性と信頼性を 高める可能性を持っています。 SML#を利用したシステム開発に関

する複数の産学共同研究を実施してき ています。中でも、NECソフトウェア東 北殿と推進している共同研究プロジェク トでは、高機能なリソース管理システム (ERP) 開発で期待通りの成果を上げ つつあります。さらに北陸先端科学技 術大学院大学と共同で、高信頼言語 SML#と仕様記述言語とを統合する新 たな枠組みの構築に関する学術研究を 計画しています。これらを含む研究によっ て将来確立されるであろう高信頼ソフト ウェア工学基盤は、かつて電子機器や 家電等において我が国が誇りとした、 斬新で、驚くほど精巧かつ信頼性の高 い製品を生産し世界をリードしたものつく り体制を復活させる土台となると期待さ れます。

Project report 研究最前線

新原理·新材料 テラヘルツ帯 光電子デバイスの研究

東北大学 電気通信研究所 超ブロードバンド信号処理(尾辻・末光・ボーバンガ)研究室

本研究室では、新たな周波数資源 の開拓としてミリ波・テラヘルツ波帯で 動作する新しい光電子デバイスの創出 と、それらの次世代情報通信・計測シ ステムへの応用に関する研究開発を 行っています。はじめにご紹介したいの が、炭素原子の単層シート: グラフェン を利用した革新的なテラヘルツデバイス の創出に関する研究です。グラフェンは、 電子・正孔がいずれも有効質量ゼロの キャリアとしてふるまうなど、とてもユニー クな物性を有しています。私たちは、グ ラフェンを光学励起もしくは電流注入励 起するとテラヘルツ帯で反転分布・利 得が得られることを理論発見し、実験 検証に成功しました(図1)。同時に、 反転分布状態にあるグラフェンでは、グ ラフェン内キャリアの集団振動量子:プ ラズモンが巨大な利得増強作用をもたら すことを理論発見し、他に先駆けて実 験検証に成功しました。現在、グラフェ ンを利得媒質とする新しいテラヘルツ レーザーの創出に向けて邁進していま す。これらは、JST-CRESTならびに科 学研究費補助金特別推進研究として 推進しています。

グラフェンの光電子デバイス応用として 次にご紹介したいのがグラフェンフォトミキ

サーです。私たちは、グラフェンをチャネ ル材料とするトランジスタ単体において、 波長多重光通信のキャリア信号二波を 混合してその差周波・ミリ波帯信号を 生成するフォトミキシング機能と、生成し たミリ波信号で別のミリ波帯のデータ信 号を中間周波数帯に下方変換するRF ミキサー機能とを同時に実現することに 成功しました。これは、光電子融合によ

るダブルミキシング機能 (図2)とも言え、現在研 究が進んでいる光通信 と無線通信の融合化に おけるキーデバイスとし て注目されており、電気 通信研究機構において 民間との共同研究とし て推進しています。

第三に、半導体ヘテ 口接合構造内に発現す る2次元プラズモン共鳴 という新しい動作原理 に立脚した、周波数可 変で光波との同期が可 能な集積型のコヒーレ ント電磁波発生・検出・ 信号処理デバイスの研 究開発を進めていま

尾辻泰一

研究室メンバー (平成26年1月現在): 教 授 尾辻泰一 准教授 末光 哲也 准教授 ボーバンガ トンベット ステファン

客員教授 リズイー ヴィクトール Ph.D (物理学) 助 教 佐藤 昭 博士 (コンピュータ理工学) 助教 (プロジェクト特任)

Ph.D (物理学)

鷹林 将

研究員 ドブロイユ アドリアン 博士 (物理学) 研究室 Webページ: http://www.otsuii.riec.tohoku.ac.ip.

す。これまでに、世界最高感度のテラ ヘルツ検出器の実現や、140Kと低温 ながらも世界初の単色テラヘルツ波の コヒーレント放射に成功しています。近 未来の実用化が期待される100ギガ ビット毎秒級の超高速テラヘルツ無線シ ステムへの導入を目指し、JST-ANR日 仏戦略的国際共同研究推進事業とし て推進しています。

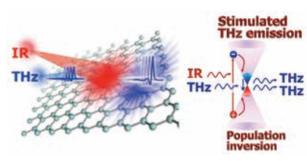


図1 光学 (IR) 励起グラフェンにおけるテラヘルツ (THz) 帯利得作 用とそれに付随する誘導放出現象

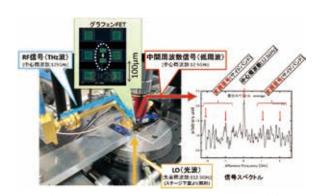


図2 グラフェンチャネルトランジスタによる光電子融合ダブルミキ シングの実験

ビットマップコンパイル 自然なデータ表現 分割コンパイル ネイティブコード生成 Cライブラリと オブジェクトを 直接リンク可能 移動しないごみ集め 実行形式ファイル

ソースコード

SML# Compiler

型推論

型主導コンパイル

SML#の構造と機能

Project report 研究最前線

音声・マルチメディアによる 新たなコミュニケーションの 価値創造 東北大学 大学院工学研究科 伊藤·能勢研究室

音声は人間同士のコミュニケーショ ンの基本となるメディアです。もともとは 人間同士が直接会って会話をするし かなかったわけですが、電話の発明 によって、離れた場所にいる人同士の 会話が可能になりました。それからも 多くの研究がなされ、現在では音声を 基本としたマルチメディアコミュニケー ションによって「いつでも」「どこでも」 「誰とでも」意思の疎诵が可能になろう としています。本研究室では、ICT に よる人間一人間間、人間一機械間の コミュニケーションに新たな価値を創造 するための研究を行っています。

人間同士の音声コミュニケーション の代表は電話ですが、大災害時や大 きなイベントで人が集中しているときな どには電話がつながりにくくなります。 このようなときに、IP ネットワークを通し て音声コミュニケーションを行う Voice over IP (VoIP) が有効です。しかし、 IP 通信ではネットワークの輻輳や回線 品質の劣化に伴ってパケット欠落が発 生し、これが通話の品質を下げます。 そこで、音声に特化した誤り訂正の枠 組みを使った頑健な音声通信方式の 研究を行っています。提案方式では、 パケット欠落率 50% という極端な環境 でも了解性を保った通話が可能になり ます。

音声によるコミュニケーションは、人 間間だけでなく、人間と機械との間の コミュニケーションにも有効です。その ために必要な技術が音声認識と音声 合成です。音声認識はスマートフォン の普及を背景に2010年ごろから急速 に一般化し、現在は多くの人が使う技 術になりました。また、音声合成は既 に多くの場面で実用化され、音声合 成によるアナウンスや文章読み上げ、 歌声合成などに利用されています。当 研究室では、多様な場面での音声認 識を実現するため、家庭環境雑音中 の音声認識性能の向上、低速なマイ コン上での音声認識方式の開発を 行っています。また、単に文章を読み

伊藤彰則

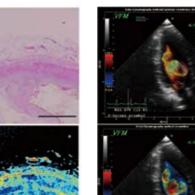
教 授 伊藤 彰則 工学博士 博士(工学)

http://www.spcom.ecei.tohoku.ac.ip

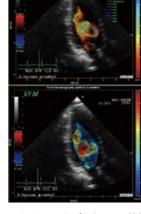
上げるだけでなく、さまざまな意図や 感情を伝えるための表現豊かな音声 合成の研究を行っています。さらに、 音声だけでなく顔画像やジェスチャな どを使うとともに、拡張現実感 (AR) 技術を使って仮想エージェントと音声で 対話をするシステムの開発などを行っ ています。

その他にも、音声への情報ハイディ ングによってメディアの価値を高める研 究、歌声の評価を行う研究など、音 声を中心としたメディアの価値を創造す る研究を総合的に推進しています。■

AR エージェントとの対話


Project report

高解像度で 生体機能を可視化する


東北大学 大学院医工学研究科 西條研究室

平成20年4月東北大学に設置され た大学院医工学研究科は、本邦におい て初の、そして現在でも唯一の医工学 を標榜する大学院です。東北大学の医 工連携の歴史は、大正から昭和にかけ てのマグノスコープ (電子聴診器) の開 発と昭和30年代に開発された世界初の 超音波心臓断層法により鮮やかに彩ら れていますが、このいずれにも電気通信 研究所は大きく貢献しており、その伝統 は21世紀に引き継がれています。

私たちの研究室では、超音波心臓 断層法の歴史を引き継ぎ、生体組織を 高解像度に観察できる超音波顕微鏡の 開発をはじめ、組織の形態だけではなく

音波顕微鏡(下)によ る動脈硬化組織の観察 スケールバー:1 mm

を基にした左心室内の二次 元血流ベクトル(上)とそ の流線表示(下)

機能を解明するための多様な医用イ メージング技術の開発を行っています。 本稿ではこの中で、高周波数超音波イ メージング、血流イメージング、光音響 イメージングについて紹介します。

高周波数超音波イメージング

超音波は医学的には安全でポータブル な診断法として知られていますが、高周 波数超音波を用いることで顕微鏡レベル の生体イメージングが可能になります。す でに複数のタイプの医学・生物学用超 音波顕微鏡を開発し、心臓、動脈硬化、 胃がん、腎臓がん、前立腺がん、整形 外科領域などの組織診断や、培養細胞

> の評価を行っています。最 近では皮膚の弾性をミクロン レベルで計測し、皮膚のエ イジング診断などにも幅広く 活用しています(図1)。

血流イメージング

超音波のドプラ効果を 利用した血流計測は広く 臨床応用されていますが、 私たちは計測結果に流体 力学の諸法則を適用する ことで、二次元血流ベクト ルおよび圧力を評価法す 3 Echo-dynamography

西條芳文

博士(工学)

http://www.ecei.tohoku.ac.jp/imaging/

を開発しました。また、本機構のプロジェ クトとして、二次元アレイ型超音波プロー ブによる血管・血流の可視化装置を地 元企業と共同開発しています(図2)。

光音響イメージング

生体組織にナノ秒パルスレーザーを照 射することで、瞬間的に生体組織が熱 膨張を起こし超音波が発生します。光音 響イメージングは、生体組織性状を光学 的および音響的特性により評価する方法 です。すでにニワトリ胚の心血管系イメー ジングに成功し、さらに変形性膝関節症 や慢性関節リウマチの診断や、細い血 管や遅い血流など超音波ドプラ法が不 向きな計測への応用を目指しています。

医療機器開発のリエゾン

医療機器開発には医学的ニーズと工 学的シーズのマッチングが重要ですが、 現在、本機構の関係部局を中心に医 療機器開発に特化したリエゾン組織を 立ち上げる準備をしています。これは、 医師のアイディアを工学研究者の保持 する技術で具現化し、さらに医療機器 のプロトタイプを製作することで、動物実 験などの前臨床試験や治験、さらに企 業の参入を容易にするための仕組みで す。本機構からも情報を発信していきま すので、今後もご注目ください。

新副機構長のご挨拶

復興と新生への情報通信技術の貢献

昭和34年9月伊勢湾台風。5098名もの 死者・行方不明者が出た。日本に迫り来る 台風を24時間前に南洋上で見つけられれ ばこのような被害を防ぐ事ができた。そのた めには4000メートルの高さにレーダーを設置 する必要があった。伊勢湾台風の被害を未 然に防ぐ事のできなかった気象庁測器課課 長補佐官藤原寛人(作家・新田次郎)は 「台風の砦を作るのだ |と財政当局への予算 説明で力説した。そして、昭和38年、富 士山レーダーの設置が決まる。レーダー建 設のためには建設・電機・輸送等広範囲 に亘る人々の力が結集された。3000メート ルを超える高地では作業員は過酷な作業環 境に耐えられず先を争って下山してしまう。 そうした作業員たちを「男は一度でいいから 子孫に自慢できるような仕事をすべきである。 富士山に気象レーダーの塔が出来れば東海 道沿線からも見える。あれは俺が作ったの だと子供や孫に伝えることが出来る」と若き 現場監督伊藤庄助は自らも高山病に苦しみながらも励まし続けた。富士山レーダー建設は、新田次郎の小説「富士山頂」に描かれ、後に、今井彰チーフプロデューサーが手掛けたNHKの番組「プロジェクトX」の第一話として取り上げられた。

明治の近代化以降、関東大震災の際の無線電信、伊勢湾台風を契機に設置された富士山レーダー、阪神淡路大震災の際のインターネット動画配信など、大規模災害における情報通信技術の活躍とそれに対して掛けられる国民の期待は大変大きい。

今日、耐災害ICTの研究開発とその実用 化に取り組む私たちは、東日本大震災から の復興と日本の新生、そして、将来発生す ることが想定される災害に対する備えのた め、その時代時代の先端技術を最大限活 用して災害に立ち向かった先人達の残して くれた教訓を胸に取り組んでいきたいではな いか。

東北大学電気通信研究所 特任教授

沼田尚道

昭和63年電気通信大学大学院電気通信学研究科(修士課程)修了。同年郵政省入省。兵庫県情報政策課長、国際電気通信連合事務総局政策官、情報通信研究機構連携研究部門統括、総務省重要無線室長、同宇宙通信政策課長等を歷任

イベントカレンダー

独立行政法人情報通信研究機構 (NICT) 耐災害ICT 研究センタ 開所シンポジウム

日 時:平成26年3月3日(火) 13:00~17:45

場 所:東北大学片平キャンパス さくらホール

災害振興新生研究機構シンポジウム

日 時:平成26年3月9日(日)

第1部/10:30~12:20 第2部/13:30~17:30

場 所:ウエスティンホテル 仙台

東北大学災害科学国際研究所東日本大震災3周年シンポジウム

日 時:平成26年3月9日(日) 13:00~17:00

場所:トラストシティプラザ

編集

はやいもので、創刊号発刊から半年が過ぎ、季節は初夏から早春となり、まもなく新年度を迎えようとしています。編集委員の皆様やご執筆頂いた先生方のご尽力により、電気通信研究機構NEWS第2号を無事発刊することでき、ほっと一息ついております。次号は11月に発刊予定です。読者の皆様に、電気通信研究機構の新たなプロジェクト等をご紹介できるよう、コーディネーション活動に取り組んでいきたいと思っています。

編集委員(戦務略) 安達文幸/石川いずみ/伊藤保春/岩月勝美(委員長)/北形 元/末松憲治/中沢正隆/沼田尚道/松岡 沿

リサイクル適性(A)
この印刷物は、印刷用の紙へ
リサイクルできます。

