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Abstract. We classify the global behavior of the weak solution of the Keller-Segel system of
degenerated type. For the stronger degeneracy the weak solution exists globally in time and
it shows the time uniform decay under some extra conditions. If the degeneracy is weaker the
solution exhibit a finite time blow-up if the data is non-negative. The situation is very similar
to the semi-linear case. Some additional discussion is also presented.

1. Keller-Segel system

1.1. Survey for Non-degenerated Case. This note is concerning the temporal behavior of a
global solution of the degenerated parabolic elliptic system. Before introducing the problem we
consider, let us start from the original model of the chemotaxis called as the Keller-Segel system
introduced in [16]. The semilinear type of the original Keller-Segel system is the following form:
For λ ≥ 0,




∂tu − ∆u + ∇(u∇ψ) = 0, x ∈ R
n, t > 0,

∂tψ − ∆ψ + λψ = u, x ∈ R
n, t > 0,

u(0, x) = u0(x), x ∈ R
n,

ψ(0, x) = ψ0(x), x ∈ R
n.

(1.1)

Here the unknown function u(t, x); R+ × R
n → R+ denotes the density of a mucus amoeba and

ψ(t, x); R+ × R
n → R stands for the potential of chemical substances. In order to exploit the

contrast between the existence and non-existence of the solution, Jäger-Luckhaus [14], Wolansky
[38] and Nagai [22] considered the parabolic-elliptic version of the above system:




∂tu − ∆u + ∇(u∇ψ) = 0, x ∈ R
n, t > 0,

− ∆ψ + λψ = u, x ∈ R
n, t > 0,

u(0, x) = u0(x), x ∈ R
n.

(1.2)

It has been studied in detail for the asymptotic behavior of the solutions for the above systems
([14], [40], [1], [23], [9]). In fact this system (1.2) has a strong connection with the self-interacting
particles that studies largely by Biller [1], [2] and reference therein.
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The above systems are also connected to a simplest model equation of the semiconductor
devise simulation of bipolar type (cf. [21], [15]):



∂tn − ∆n −∇(n∇ψ) = 0, x ∈ R
n, t > 0,

∂tp − ∆p + ∇(p∇ψ) = 0, x ∈ R
n, t > 0,

− ∆ψ = ε(p − n) + g, x ∈ R
n, t > 0,

n(0, x) = n0(x), p(0, x) = p0(x), x ∈ R
n,

(1.3)

where n(t, x) and p(t, x) denote the density of the negative and positive charge, respectively and
g(x) denotes the background charge density which is a given function. When the background
charge can be neglected, the equation is considered as the two species version of the Keller-Segel
model except the sign of the nonlinear interaction. The semi-conductor devise model chooses a
stabler sign of the nonlinearity that makes the system admits large data global solutions. Note
that the unstable case, there is an analogous blow up result holds for the above two species
system (see Kurokiba-Ogawa [20] and Kurokiba-Nagai-Ogawa [19]). In the both cases (1.2) and
(1.3), the critical case for the equation is n = 2 in the scaling point of view. This is corresponding
to the well known Fujita exponent 1 + 2/n for the semilinear heat equation ([12]) and the two
dimensional case the quadratic nonlinearity is exactly corresponding to the critical situation.
The existence, the uniqueness and the regularity theory for the corresponding problem in a
bounded domain has already been done by many authors. Here we concentrate the Cauchy
problem in R

2 to examine the scaling invariance point of view.
The result for the global existence for the Keller-Segel system (1.1) can be summarized as

follows:

Theorem 1.1. ([25]) Let λ > 0 be constants and n = 2. Suppose (u0, v0) ∈ (L1(R2)∩L2(R2))×
H1(R2) are positive. Then under the condition either for (1.1),∫

R2

u0(x)dx < 4π(1.4)

or for (1.2) ∫
R2

u0(x)dx < 8π,(1.5)

then the positive solution to (1.1) (or (1.2)) exists globally in time. Namely (u, v) ∈ C([0,∞); (L2∩
L1) × (H1 ∩ L1)) ∩ C1((0,∞); H2 × H2) and it satisfies that for all T > 0, there exists a finite
constant C = C(T ) such that∫

R2

{(1 + u(t)) log(1 + u(t))} +
1
2
‖∇v(t)‖2

2 +
1
2
λ‖v(t)‖2

2 ≤ C(T ),

t ∈ [0, T ].
(1.6)

In the both cases, the role of the generalized free energy (1.6) is important to obtain the time
apriori estimate for the solutions. Note that it has already proved that if the initial data satisfies∫

R2

u0(x)dx > 8π

then the positive solution blows up in a finite time (cf. Biler [1], Nagai [22] and Nagai-Senba-
Yoshida [27]).
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On the other hand, to discuss the analogous result for the simpler system λ = 0 of (1.2) we
encounter a different kind of technical difficulty. For this case, it is also known that the solution
with u0 ≥ 0 blows up in a finite time if

∫
R2 u0(x)dx > 8π (Biler [1], Nagai [22], [24] and Nagai-

Senba-Yoshida [26]). For the whole space case, the restriction that the solution having the finite
second moment

∫
R2 |x|2u(t)dx < ∞ is removed by the scaling method in Kurokiba-Ogawa [20].

Besides when the domain is bounded in R
2 with the Neumann boundary condition, Senba-

Suzuki [31] showed that the L1 density shows a concentration with the measure 8πδ0 if the data
is the radially symmetric. This can be generalized for the non-radial case by Senba-Suzuki [32].

The second system (1.2) with λ = 0 also has analogous property of its structure. However
the proof of the global existence is rather complicated since the behavior of the solution of the
second equation is different from the first one. Namely we can not use the free energy functional
directly to derive any a priori bound for the solution which is not considered in the literatures
before. We discuss on this direction in [25] in details. One may summarize those existence and
non-existence result for the whole space case as follows:

Theorem 1.2. ([25], [20]) Let λ = 0 in (1.2). Suppose u0 ∈ L1(R2) ∩ L2(R2) is non-negative
everywhere.
(1) Then under the condition ∫

R2

u0(x)dx < 8π,(1.7)

the positive solution to (1.2) exists globally in time. Namely (u, ψ) ∈ C([0,∞); (L2 ∩ L1) ×
Ẇ 1,∞) ∩ C1((0,∞); H2 × Ẇ 2,1) and it satisfies that for all T > 0 there exists a finite constant
C = C(T ) such that∫

R2

{
(1 + u(t)) log(1 + u(t)) − u(t)

}
dx ≤ C(T ), t ∈ [0, T ].

(2) On the other hand, if the positive initial data satisfies∫
R2

u0(x)dx > 8π,(1.8)

then the solution does not exists globally. Namely it blows up in a finite time.

The threshold case ‖u0‖1 = 8π is considered recently by Biler-Karch-Laurençot-Nadzieja [5]
for the radially symmetric case.

1.2. Degenerated Case. The second problem we would like consider here is the degenerated
version of the modified model of the Keller-Segel system.




∂tu − ∆uα + ∇(u∇ψ) = 0, x ∈ R
n, t > 0,

− ∆ψ + λψ = u, x ∈ R
n, t > 0,

u(x, 0) = u0(x), x ∈ R
n,

(1.9)

where α ≥ 1 and λ > 0. An analogous variant of the semiconductor system like (1.3) is also our

motivation. In that case, the stabler sign of the nonlinear interaction is chosen.
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The striking difference between the semilinear system (1.2) and the degenerated case (1.9) is
that the equation essentially includes the hyperbolic structure in it and the finite propagation
of the support of the solution may occur. If the solution is strictly positive, the solution is
considered similarly as the semi-linear case. As is mentioned for the semilinear case, there exists
a finite time blow up solution for a certain initial data and analogously the finite time blow up
possibly occurs for the degenerated case. More precisely, when the data is positive and have the
large initial value in the sense of L1, then the solution for the modified version of the Keller-Segel
system blows up in a finite time ([22], [1]) when n = 2 and for higher dimensional cases, the
condition is getting weaker since the system is less stable. For the degenerated case, we expect
an analogous situation.

If there is a point where the solution varnish, the equation is essentially degenerated and
therefore the notion of weak solution is required.
Definition. Let α ≥ 1. Given u0 ∈ L1∩Lα(Rn) with u0(x) ≥ 0 for x ∈ R

n, we call (u(t, x), ψ(t, x))
as a weak solution of the system (1.9) if there exists T > 0 such that

i) u(t, x) ≥ 0 for any (t, x) ∈ [0, T ) × R
n,

ii) u ∈ C(Rn × [0, T )) with ∇uα ∈ L2(Rn × [0, T )),
iii) For arbitrary test function φ ∈ C1,1(Rn × [0, T )),∫

Rn

u(t)φ(t)dx −
∫

Rn

u0φ(0)dx

=
∫ t1

t0

∫
RN

(u(τ)∂tφ(τ) −∇uα(τ) · ∇φ(τ) + u(τ)∇ψ(τ) · ∇φ(τ)) dxdτ

for 0 ≤ t ≤ T , where ψ = En ∗ u and En(·) is the fundamental solution of −∆ + λ in R
n.

The difference between the degenerated case and semilinear case appears where the solution
vanishes. By this regards, it is important to show the finite propagation of the support.

The existence of the weak solution is obtained by an application of the standard theory of the
parabolic equation. Note that the equation does not have the comparison principle of solutions
for any type nor the semi group representation as is possible for the semilinear case, the proof of
the existence requires some approximation procedures involving the parabolic regularity theory.
The following result due to Sugiyama [34] is one of the explicit proof of them.

Proposition 1.3 ([34]). For α > 1, there exists T > 0 and a weak solution (u, ψ) of the degen-
erated Keller-Segel system (1.9) for u0 ∈ L1(Rn) ∩ Lα(Rn). Moreover
(1) if 2 ≤ α the weak solution exists globally in time,

(2) if 1 < α < 2 − 2
n and the initial data u0 is sufficiently small in L1 sense, then the weak

solution exists globally.

The exponent α = 2 − 2
n is corresponding to the Fujita exponent for the semilinear and

quasi-linear parabolic equation of the following type (cf. Fujita [12]):{
∂tu − ∆uα = up, x ∈ R

n, t > 0,

u(x, 0) = u0(x), x ∈ R
n,

(1.10)
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where α ≥ 0. The exponent p = α+ 2
n = 1+ σ

n with σ = α(n−2)+2 is considered the threshold
for the global existence and finite time blow up for the small data solutions. The aim of this
paper is to fill all the case of the exponent and give the classification of the global existence and
finite time blow up of the degenerated case of Keller-Segel equation. More specifically, if the
exponent satisfies the other condition, then the solution blows up in a finite time for the large
initial data.

Theorem 1.4. (Global existence) Let λ = 1. For α > 1, let (u, ψ) be a weak solution of the
degenerated Keller-Segel system (1.9) for u0 ≥ 0 obtained in the above Proposition.
(1) Let n ≥ 2, If α > 2− 2

n , then the solution exists globally in time. Moreover the weak solution
satisfies the uniform estimate as follows:

‖u(t)‖∞ ≤ C(‖u0‖1, ‖u0‖∞, ‖Λ−1u0‖2)

for t ∈ [0,∞).
(2) Let n ≥ 3. If α ≤ 2 − 2

n and the initial data is small in the following sense: there exists
a constant C > 0 such that

‖u0‖1 ≤ C(‖En‖
L

n
n−2
w

),

where En is the fundamental solution of −∆+1 in R
n. Then the solution exists globally in time

and moreover if 2− 4
n+2 < α the solution satisfies the uniform boundedness estimate as in above.

Theorem 1.5. (Finite time blow up) Let (u, ψ) be a weak solution of the degenerated Keller-
Segel system (1.9) with λ = 1 for u0 ≥ 0 obtained in the above Proposition. Assuming that
n ≥ 3 and α ≤ 2 − 2

n , and the initial data u0 ∈ L1(Rn) ∩ Lα(Rn) with |x|2u0 ∈ L1(Rn) satisfies
the following condition:

W (0) ≡ 1
α − 1

‖u0‖α
α − 1

2
‖Λ−1u0‖2

2 < 0,

where Λ = (−∆ + 1)1/2 is the Bessel potential in R
n, then the weak solution does not exists

globally in time. Namely there exists Tm < ∞ such that for some initial data u0 the weak
solution blows up in a finite time Tm in the following sense;

lim sup
t→Tm

‖u(t)‖p = ∞

for all p ∈ [α,∞].

Remark. For the initial data satisfies the condition in Theorem 1.5, the L1 norm of the data u0

is naturally large. Especially for the critical case, α = 2 − 2
n , the data has to have the large L1

norm.

For the proof of the local existence of the weak solution, one may adopt the argument of
Sugiyama [35] and standard theory of the degenerated parabolic system (as in the theory of
p-Laplace heat flow). In fact, the global existence result for the system is heavily depending on
the a priori bound for the approximated solutions. One may find the a prori bound by argument
from Theorem 1.4.

For bounded domain Ω, the analogous blowing up problem is considered by Biler-Nadzieja-
Stanczy [6]. They showed the non-existence of the solution in the bounded domain Ω ⊂ R

n for
the Dirichlet boundary condition and the Neumann boundary condition. In those settings, the
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weighted density
∫
Ω |x|2u(t)dx can always make sense and the proof is rather simpler. Analogous

result for the Cauchy problem is also considered by Sugiyama [35].

For the semilinear case, α = 1, it has already been proved that n = 2 is the critical case
α = 1 = 2 − 2

n and the solution may blow up in finite time for the large initial data. Our
theorem is a natural extension of those semilinear case. In particular, the case of the Cauchy
problem, the threshold of the global existence and finite time blowing up of the solution is
determined by the size of the L1 norm of the initial data. Especially the semilinear critical
case, the threshold number 8π is connected with the best possible constant of the isoperimetric
inequality via the Trudinger-Moser type inequality ([27]). The similar result can be also obtained
by using the improved Brezis-Merle type inequality (Nagai-Ogawa [25]).

The crucial part of the proof is to show the apriori bound for the weak solution in time
globally. It is well understood that the solution of the semilinear equation (1.2) satisfies the
following conservation laws:

∫
Rn

u(t)dx =
∫

Rn

u0dx,

W (t) +
∫ t

0

∫
Rn

u |K(u, ψ)|2 dxdt = W (0),

with

W (t) ≡
∫

Rn

(1 + u(t)) log(1 + u(t))dx −
∫

Rn

u(t)v(t) dx +
1
2
(‖∇ψ(t)‖2

2 + ‖ψ(t)‖2
2),

K(u(t), ψ(t)) ≡ ∇
(

log(1 + u(t)) − ψ
)
.

The global existence part of the weak solution of the degenerated system in the above theorems
are essentially depending on the corresponding conservation laws of the quasi-linear case (cf. for
the semilinear case [3]).

Finally we discuss about the asymptotic behavior of the global small solution when the de-
generacy order is less than the critical case. We denote the weighted Lebesgue space Lp

a(Rn) =
{f ∈ Lp(Rn); | · |af(·) ∈ Lp(Rn)}.

Theorem 1.6. (Decay of solution) Let 1 < α ≤ 2 − 2
n and we assume that u0 ∈ L1

2(R
n) ∩

L∞(Rn). Then the corresponding global weak solution u(t, x) of (1.9) satisfies the following
asymptotic behaviors:
(1) For 1 < α ≤ 2 − 2

n , if we assume that for some absolute constant Cn > 0, ‖u0‖1 ≤ Cn, then
we have

‖u(t)‖p ≤ C(1 + σt)−
n
σ

(
1− 1

p

)
,(1.11)

where C is only depending on u0 and n.
(2) For 1 < α < 2 − 2

n , we assume the initial data is small in L1 sense. Then for M = ‖u0‖1

and for some ν > 0,

‖u(t) − MU(t)‖1 ≤ C(1 + σt)−ν ,
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where U(t) is the Barenbratt solution given by

U(t) = (1 + σt)−n/σ

(
A − |x|2

(1 + σt)2/σ

)
+

,

where A > 0 is a constant so that ‖U(t)‖1 = 1 and σ = n(α− 1) + 2. In particular, the solution
u(t) satisfies the uniform decay estimate (1.11).

The semilinear version of the above asymptotic result is obtained by several authors (see for
example, Biler-Dolbeault [3] for the case (1.2) and Kozono-Sugiyama [18] for the case (1.1)).
The proof of the above asymptotic behavior is depending on the second moment identities.
The method developed by Carrillo-Toscani [8] for the Fokker-Planck equation can be applied in
our case. There is a variational formulation on the stationary solution of the porous medium
equation (see Otto [30]) and the back ground of the proof is lying on this fact. Under the
self-similar scaling (cf. Giga-Kohn [13]) we introduce the new scaled variables (t′, x′) as{

t′ = 1
σ log(1 + σt)

x′ = x/(1 + σt)1/σ

one can find the scaled equation is of the form


∂tv − div (∇vα + xv − e−κtv∇φ) = 0 t > 0, x ∈ R
n,

− e−2t∆φ + λφ = v,

v(0, x) = u0(x),

(1.12)

with κ = n + 2 − σ = n(2 − α), where


v(t, x) ≡ entu

(
1
σ

(eσt − 1), xet

)
,

φ(t, x) ≡ entψ

(
1
σ

(eσt − 1), xet

)
.

Then the scaled equation (1.12) also has an analogous entropy; setting

Ws(v, φ)(t) ≡ 1
2
H(v(t)) − 1

2
e−κt

∫
Rn

v(t)φ(t) dx,

H(v(t)) =
2

α − 1

∫
Rn

vα(t)dx +
∫

Rn

|x|2v(t)dx,

Ks(x, v(t), φ(t)) = K(x, v, φ) ≡ ∇
( α

α − 1
vα−1 +

1
2
|x|2 − e−κtφ

)
.

the following identities holds in formally (Proposition 4.1):∫
Rn

v(t)dx =
∫

Rn

u0(x)dx,

Ws(t) +
∫ t

0

[∫
Rn

v |K(x, v, φ)(τ)|2 dxdτ + e−(κ+2)τ

∫
Rn

|∇φ(τ)|2dx

]
dτ = Ws(0).

Hence the decay of the solution follows from the analogous estimate for the global existence
of the weak solution. The convergence to the limiting solution is derived from computing the
second time derivative of the moment.

This paper is organized as follows. In the following section, we derive the above entropy
and free energy bound formally. Based on this conserved quantities, we show the time apriori
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estimate for the global weak solution in section 2. In section 3, we show the formal blow up
proof. The last two sections 4 and 5 are devoted to the proof of the decay of the solution.

2. Free Energy Estimate and Uniform A Priori Bound

2.1. Conserved quantities. We start with the following lemma for the conservation law and
the entropy functional:

Lemma 2.1. Let (u, ψ) be a weak solution of (1.9). Then we have the following inequalities:∫
Rn

u(t)dx =
∫

Rn

u0(x)dx,(2.1)

W (t) +
∫ t

0

∫
Rn

u |K(u, ψ)|2 dxdt ≤ W (0)(2.2)

with

W (t) ≡ 1
α − 1

‖u(t)‖α
α − 1

2

∫
Rn

u(t)ψ(t) dx,

K(u(t), ψ(t)) ≡ ∇
( α

α − 1
uα−1 − ψ

)
.

(2.3)

Proof of Lemma 2.1. For the completeness, we show the formal proof of those conservation
laws. Multiplying (1.9) by

α

α − 1
uα−1 − ψ and integrate by parts, we see

∫
Rn

∂tu
( α

α − 1
uα−1 − ψ

)
dx = −

∫
Rn

(
∇uα − u · ∇ψ

)
· ∇

( α

α − 1
uα−1 − ψ

)
dx

= −
∫

Rn

u
∣∣∣∇( α

α − 1
uα−1 − ψ

)∣∣∣2dx

(2.4)

From the second equation,∫
Rn

u · ∂tψdx =
1
2

d

dt

∫
Rn

(
|∇ψ|2 + |ψ|2

)
dx.

Thus the left hand side of (2.4) is

d

dt

( 1
α − 1

‖u(t)‖α
α −

∫
Rn

uψ dx +
1
2

∫
Rn

(
|∇ψ|2 + |ψ|2

)
dx

)
,(2.5)

Combining (2.4) and (2.5)

d

dt
W (t) +

∫
Rn

u
∣∣∣∇( α

α − 1
uα−1 − ψ

)∣∣∣2dx = 0.(2.6)

Integrating in time of both side of (2.6), we obtain the desired estimate. The rigorous justification
requires some regularizing argument for the equation in order to escape the degeneracy.

2.2. Uniformly boundedness. We only show the a priori estimates for the global existence
of the weak solution. The local existence theorem requires some approximation procedures. We
do not go into the details in this direction.

Under the condition α > 2 − 2
n , we show the uniform boundedness of the solution (u, ψ), To

see this, the apriori bound for Lα is essential. We start from the following auxiliary lemma
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Lemma 2.2. Let En be the fundamental solution of (−∆ + 1) in R
n. Then for u ∈ L1(Rn) ∩

Lα(Rn), let ψ = Enu be solution of the second equation of the system (1.9), we have∫
Rn

uψdx =
1
2

(
‖∇ψ‖2

2 + ‖ψ‖2
2

)
≤ ‖En‖

L
n

n−2
w

‖u‖1−γ
1 ‖u‖1+γ

α ,(2.7)

where γ = α(n−2)
n(α−1) − 1 < α − 1.

Proof of Lemma 2.2. The first identity in (2.7) is obtained directly from the second equation.
By the Hölder inequality, ∫

Rn

uψdx ≤ ‖u‖r‖ψ‖r′ for
1
r

+
1
r′

= 1(2.8)

While
‖u(t)‖r ≤ ‖u‖1−γ

1 ‖u‖γ
α

under
1
r

= 1 − γ +
γ

α
and by the Hausdorff-Young inequality,

‖ψ‖r′ ≤ ‖En‖
L

n
n−2
w

‖u‖α

with
1
r′

=
n − 2

n
+

1
α
− 1.

If we wish to choose γ + 1 < α, then by

γ

(
1 − 1

α

)
= 1 − 1

r
=

n − 2
n

+
1
α
− 1,

we see

α

(
1 − 1

α

)
> (γ + 1)

(
1 − 1

α

)
=

n − 2
n

.

This relation yields

α > 2 − 2
n

and this condition gives a uniformly boundedness of the Lα norm of the solution.

Proposition 2.3. (1) Let α > 2 − 2
n . Then we have

‖u(t)‖α
α +

1
2
(‖∇ψ(t)‖2

2 + ‖ψ(t)‖2
2) ≤ C(W (0) + Cn‖u0‖

α(γ+1)
α+γ−1

1 )

for all t ∈ [0,∞), where γ < α − 1. In particular,

‖u0‖α
α ≤ C(W (0) + Cn‖u0‖

α(γ+1)
α+γ−1

1 ).

(2) Let 1 < α ≤ 2− 2
n . Then there exists a constant C = Cn which is only depending on n such

that for the weak solution satisfying ‖u0‖1 ≤ Cn, we have

‖u(t)‖α
α ≤ C(n, ‖u0‖1, W (0))

for all t ∈ [0,∞).
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Proof of Proposition 2.3. By the entropy bound (2.2), it suffices to show that∫
Rn

u(t)ψ(t)dx

is controlled by ‖u(t)‖α
α and W (0). To see this we see by Lemma 2.2 that under the condition

α > 2 − 2
n , ∫

Rn

u(t)ψ(t)dx ≤C‖u(t)‖1−γ
1 ‖u(t)‖1+γ

α

≤ε‖u(t)‖α
α + Cε‖u0‖

α(1−γ)
α−(γ+1)

1

(2.9)

and the desired estimate follows from (2.9), L1 conservation law and entropy bound W (t) ≤
W (0).

For the case 1 < α ≤ 2 − 2
n , we again use Lemma 2.2 and the entropy bound (2.2), we see

2
α − 1

‖u(t)‖α
α ≤ W (0) + ‖En‖L

n/(n−2)
w

‖u0‖1−γ
1 ‖u(t)‖γ+1

α .

When α = 2 − 2
n then γ + 1 = α and the smallness condition

‖u0‖1−γ
1 <

2
α − 1

‖En‖−1

L
n/(n−2)
w

directly gives the uniform boundedness of ‖u(t)‖α. For 1 < α < 2 − 2
n , there exists a constant

C0 which is determined by W (0), α, n and ‖En‖L
n/(n−2)
w

such that for ‖u0‖1 ≤ C0 then we also
see that

‖u(t)‖α
α ≤ C(n, α, ‖u0‖1, W (0))

uniformly in t.

Remark The exponent of L1 norm of the right hand side of the proposition satisfies

α(1 − γ)
α − (γ + 1)

≥ 2.

Theorem 2.4. Let n ≥ 2 and suppose that α > 1. Then under the condition that ‖u(t)‖α is
uniformly bounded in t, we have for any t > 0,

‖u(t)‖∞ + ‖ψ(t)‖∞ ≤ C(W (0), ‖u0‖1, ‖u0‖∞, α, n).

Hence the weak solution globally exists.

Proof of Theorem 2.4. Firstly we observe that for some r0 > n, we have the uniform bounded
estimate for ‖u(t)‖r0 by Proposition 2.3. We apply the standard parabolic estimate and we see
for any r > α that

d

dt
‖u(t)‖r

r +
2r

α + r − 1
‖∇uγ(t)‖2

2 =
∫

Rn

∇ur(t) · ∇ψ(t)dx ≤ ‖u(t)‖r+1
r+1,(2.10)

where γ = 1
2(α + r − 1). Now we invoke the Gagliardo-Nirenberg interpolation inequality

‖f‖(r+1)/γ ≤ C‖f‖1−σ
r/χγ‖∇f‖σ

2 ,

γ

r + 1
=

χγ(1 − σ)
r

+ σ

(
1
2
− 1

n

)(2.11)
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for some χ > 1. It follows by substituting f = uγ(t),

‖u(t)‖r+1
r+1 ≤ C‖u(t)‖(r+1)(1−σ)

r/χ ‖∇uγ(t)‖σ(r+1)/γ
2 .

If we assume that σ(r + 1)/γ < 2 which is assured under the condition

2 − 2r

χn
< α,(2.12)

we have

‖u(t)‖r+1
r+1 ≤ C‖u(t)‖β

r/χ + ‖∇uγ(t)‖2
2(2.13)

with

β = (1 − σ)(r + 1)
(

1 − 2γ

σ(r + 1)

)−1

.

Similarly we see that

‖u(t)‖r
r ≤C‖u(t)‖r(1−µ)

1 ‖∇uγ(t)‖rµ/γ
2

≤C‖u(t)‖δ
1 + ‖∇uγ(t)‖2

2,
(2.14)

where rµ/γ < 2 under 1 − r
n < α and

δ =(1 − µ)r
(

1 − rµ

2γ

)−1

=
(1 − µ)(1 + (α − 1)/r)

1 − µ + (α − 1)/r
r

=
1 − µ + (1 − µ)(α − 1)/r

1 − µ + (α − 1)/r
r < r,

since (1 − µ)(α − 1)/r < (α − 1)/r. Thus combining (2.10), (2.13) and (2.14), we obtain
d

dt
‖u(t)‖r

r + C0‖u(t)‖r
r ≤ C‖u(t)‖β

r/χ + C‖u(t)‖δ
1(2.15)

with

β =(1 − σ)(1 + r)
(

1 − σ(r + 1)
2γ

)−1

.

Let us firstly choose that χ = r/α > 1. Then we see from (2.15) that
d

dt
‖u(t)‖r0

r0
+ C0‖u(t)‖r0

r0
≤ C‖u(t)‖β

α + C‖u(t)‖δ
1,

under the condition that 2− 4
n+2 < α. Since by the assumption, the right hand side is uniformly

bounded in t, it follows that by multiplying eC0t into both side of the inequality, we see that

‖u(t)‖r0
r0

≤‖u0‖r0
r0

+

(
C sup

t∈[0,T ]
‖u(t)‖β

α + C‖u0‖δ
1

)∫ t

0
e−C0(t−s)ds

≤‖u0‖r0
r0

+ C‖u0‖δ
1 + C sup

t∈[0,T ]
‖u(t)‖β

α.

(2.16)

The above estimate combining the Sobolev inequality and the elliptic estimate implies

‖∇ψ(t)‖∞ ≤ C‖u(t)‖r0

for some r0 > n, where C is independent of t, implies the uniform bound for ‖∇ψ(t)‖∞.
11



Now we show for the general case r ∈ [r0,∞]. Starting from the Lr inequality (2.10),
d

dt
‖u(t)‖r

r +
2r

α + r − 1
‖∇uγ(t)‖2

2 ≤‖∇ψ(t)‖∞
∫

Rn

|∇ur|dx

≤2r‖∇ψ‖∞
r + α − 1

‖u(t)‖(r−α+1)/2
r−α+1 ‖∇uγ‖2,

(2.17)

where γ = 1
2(α + r − 1). Analogous to (2.11), the Gagliardo-Nirenberg interpolation inequality

‖f‖(r+1−α)/γ ≤ C‖f‖1−σ
r/χγ‖∇f‖σ

2 ,

γ

r + 1 − α
=

χγ(1 − σ)
r

+ σ

(
1
2
− 1

n

)
for some χ > 1. It then follows by substituting f = uγ(t),

‖u(t)‖r+1−α
r+1−α ≤ C‖u(t)‖(r+1−α)(1−σ)

r/χ ‖∇uγ(t)‖σ(r+1−α)/γ
2 .(2.18)

If we assume that σ(r + 1 − α)/γ < 2 which is assured under

1 − r

n
< α,

we have
‖u(t)‖r+1−α

r+1−α ≤ C‖u(t)‖β
r/2 + ‖∇uγ(t)‖2

2,

where

β =(1 − σ)(1 + r − α)
(

1 − σ(r + 1 − α)
2γ

)−1

=
2γ(1 − σ)

2γ/(r + 1 − α) − σ

=r
1 − σ + (1 − σ)(α − 1)/r

1 − σ + 2(α − 1)/(r + 1 − α)
< r.

Thus we again use (2.10), (2.15) that
d

dt
‖u(t)‖r

r + C0‖u(t)‖r
r ≤ C‖u(t)‖β

r/χ + C‖u(t)‖δ
1,

under the condition 2 − 4
n+2 < α. Note that all the constants appearing the above inequality

is depending on r but they can be chosen uniformly bounded as r → ∞. It follows that by
multiplying eC0t into both side of the inequality, we see that

‖u(t)‖r
r ≤ ‖u0‖r

r +

(
C sup

t∈[0,T ]
‖u(t)‖β

r/χ + C‖u0‖δ
1

)∫ t

0
e−C0(t−s)ds.

For sufficiently large r > n, we see that

‖u(t)‖r + M ≤ C1/r(M + sup
t∈[0,T ]

‖u(t)‖r/χ)

for all t ∈ [0, T ], where M = max(‖u0‖1, ‖u0‖∞). Now choosing r = χm, we see by Nash-Moser
iteration argument that

‖u(t)‖∞ ≤ Cc
∑

m χ−m
(M + sup

t∈[0,T ]
‖u(t)‖r0).

This combining with the estimate (2.16) yields the desired uniform estimate under the uniform
bound of ‖u(t)‖α.

12



For the case 1 < α ≤ 2 − 4
n+2 , we draw back to the estimate (2.15):

d

dt
‖u(t)‖r

r + C0‖u(t)‖r
r ≤ C‖u(t)‖β

r/χ + C‖u(t)‖δ
1(2.19)

with

β =
2γ(1 − σ)

2γ/(r + 1) − σ
= r

1 − σ + (1 − σ)(α − 1)/r

1 − σ + (α − 2)/(r + 1)
≡ rµr.

Thus it follows an analogous estimate as in (2.2) with µr may be larger than 1. Let r = r0 > n

is fixed and we choose χ > 1 properly so that by finite times iteration,

‖u(t)‖r0 ≤ Cc
∑m

k=1 χ−m
(M + sup

t∈[0,T ]
‖u(t)‖r0/χm)c

∏m
k=1 µ

χk ,

where the exponent r/χm reaches in [1, α] and hence we have

‖u(t)‖r0 ≤ C independent of t.

The rest of the argument is similar to the case 2 − 4
n+2 < α.

Note that we can eliminate the initial restriction ‖u0‖r by the parabolic regularity argument.
The regularity of ψ(t) immediately follows from the standard elliptic estimate for the second
equation.

Lemma 2.5. Let α > 1. For any f ∈ Lα(Rn) with |x|2u0(x) ∈ L1(Rn) then we have

‖f‖1 ≤ C

(∫
Rn

|x|2|f(x)|dx

)1−κ

‖f‖κ
α,

where

κ =
2α

α(n + 2) − n
.

Proof of Lemma 2.5. For simplicity we assume f ≥ 0. The general case can be easily obtained
by a simple modification. For r > 0 chosen to be later, we see for some constants a, b > 0,∫

Rn

f(x)dx ≤
∫

Br

f(x)dx +
∫

Bc
r

f(x)dx

≤arn/α′
(∫

Br

|f(x)|αdx

)1/α

+
b

r2

∫
Bc

r

|x|2f(x)dx

≤arn/α′‖f‖α +
b

r2

∫
Rn

|x|2f(x)dx

≡Arn(α−1)/α + Br−2 ≡ f(r).

(2.20)

Then f ′(r) = n
αArn/α−1 − 2Br−3 = 0 gives

r
n
α′ +2 = c

B

A
.

Thus

r = c

(
B

A

) α
α(n+2)−n

and desired inequality follows.
13



3. Finite Time Blow-up

3.1. Dimension Analysis. Let λ > 0 and µ > 0 be a scaling parameter. We introduce the
following scaled solutions: {

uλ,µ = λu(µx),

ψλ,µ = λµ−2ψ(µx).
(3.1)

A direct computation gives

Lemma 3.1. By the scaling we see

‖uλ,µ‖1 =λµ−n‖u‖1,

‖uλ‖α
α =λαµ−n‖u‖α

α,∫
Rn

uλψλdx =λ2〈µ〉−(n+2)

∫
Rn

uψdx.

(3.2)

Now we see if the initial entropy may be chosen as negative.

Lemma 3.2. Let n ≥ 2. and u ∈ L1 ∩ Lα. For λ, µ > 0 we define the scaled function
uλ,µ = λu(µx). Set ‖uα,µ‖1 = A,, then for α < 2 − 2

n , by choosing λ >> 1 large enough then

W (0) =
1

α − 1
‖uλ,µ‖α

α − 1
2

∫
Rn

uλ,µ(−∆ + 1)−1uλ,µdx < 0.

If α = 2 − 2
n then by choosing A sufficiently large, we have the same conclusion.

Proof of Lemma 3.2. By ‖uλ,µ‖1 = λµ−n = A, we have µ = (λ/A)1/n. Then we have for
positive constants B = ‖u‖α

α
α−1 , C = 1

2‖Λ−1u‖2
2,

W (uλ,µ) =
1

α − 1
λαµ−n‖u‖α

α − 1
2
λ2µ−n〈µ〉−2

∫
Rn

u(−∆ + 1)−1udx

=ABλα−1 − C
λ2A

n+2
n

λ(A
1
n + λ

1
n )2

=Aλα−1

(
B − λ2−αA

2
n C

(A
1
n + λ

1
n )2

)

=


Aλα−1

(
B − A2/nCλ2− 2

n
−α

)
, λ > 1,

Aλα−1
(
B − Cλ2−α

)
, λ < 1.

(3.3)

Hence when α < 2 − 2
n then by choosing λ large, we have W < 0 under the condition. If

α = 2 − 2
n then choose A = ‖u‖1 sufficiently large, then we have W < 0.

3.2. Virial Law and Blow-up. In this section, we show the non-existence of the weak solution
and finite time blow up by a formal way. The argument is almost similar to the one in [6] (cf.
[29]).

Lemma 3.3. Let (u, ψ) be a weak solution of (1.9). Then it follows that
d

dt

∫
Rn

|x|2u(t)dx = 2n‖u(t)‖α
α + 2

∫
Rn

xu(t) · ∇ψ(t)dx.(3.4)

14



Proof of Lemma 3.3. Multiplying the equation by |x|2 and integrate it by parts. We obtain
it

Here we show the rough result on the finite time blow up.

Theorem 3.4 ([6]). Let n ≥ 3 and 1 ≤ α ≤ 2 − 2
n . Then for u0 ∈ L1 ∩ Lα with |x|2u0(x) ∈

L1(Rn) and

W (0) ≡ 1
α − 1

‖u0‖α
α − 1

2
‖(−∆ + 1)−1/2u0‖2

2 < 0.(3.5)

The corresponding weak solution obtained in Proposition 1.3 blows up in a finite time.

Proof of Theorem 3.4. The proof is essentially similar to the one in [6]. We only give the
formal observation. First we see from Lemma 3.3 that

d

dt

∫
Rn

|x|2u(t)dx =2n‖u(t)‖α
α + 2

∫
Rn

xu(t) · ∇ψ(t)dx.(3.6)

Next we invoke the Pokhozaev identity for the second equation. We multiply the elliptic part
of the system by the generator of the dilation x · ∇ψ and integrate it by parts, it follows∫

Rn

x · ∇ψ(t)u(t)dx =
∫

Rn

∇iψ(t) (δij∇jψ(t) + x · ∇∇iψ(t)) dx +
1
2

∫
Rn

x · ∇|ψ(t)|2dx

=
(
1 − n

2

) ∫
Rn

|∇ψ(t)|2dx − n

2

∫
Rn

|ψ(t)|2dx

=
(
1 − n

2

) ∫
Rn

u(t)ψ(t)dx − ‖ψ(t)‖2
2.

(3.7)

Combining (3.6) and (3.7), we obtain

d

dt

∫
Rn

|x|2u(t)dx =2n‖u(t)‖α
α + (2 − n)

∫
Rn

u(t)ψ(t)dx − 2‖ψ(t)‖2
2

=2(n − 2)
(

1
α − 1

‖u(t)‖α
α − 1

2

∫
Rn

u(t)ψ(t)dx

)

+
(

2n − 2(n − 2)
α − 1

)
‖u(t)‖α

α − 2‖ψ‖2
2

=2(n − 2)W (t) + 2n

(
α − 2 + 2

n

α − 1

)
‖u(t)‖α

α − 2‖ψ‖2
2.

Hence by assuming n ≥ 3 and α ≤ 2 − 2
n then it is possible to choose the initial data such as

W (0) < 0 by Lemma 3.1 and we see

d

dt

∫
Rn

|x|2u(t)dx ≤ W (0) < 0,(3.8)

which yields a contradiction within a finite time.

4. Time Decay of Small Solution

In this section, we consider the decay and asymptotic behavior of the global weak solution of
the degenerated Keller-Segel system.
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4.1. Rescaled equation. To avoid the confusion, we change the notation slightly.


∂tu − ∆uα + ∇(u∇ψ) = 0, x ∈ R
n, t > 0

− ∆ψ + λψ = u x ∈ R
n, t > 0

u(0, x) = u0(x), x ∈ R
n,

(4.1)

We introduce the new scaled variables (t′, x′) as{
t′ = 1

σ log(1 + σt)
x′ = x/(1 + σt)1/σ

(4.2)

and introduce the new scaled unknown function u(t′, x′) by
In regarding to the presence of λ > 0, we may choose the scaling that maintain the λ term as

it is. Namely we let

u(t, x) = (1 + σt)−n/σv

(
1
σ

log(1 + σt),
x

(1 + σt)1/σ

)

ψ(t, x) = (1 + σt)−n/σφ

(
1
σ

log(1 + σt),
x

(1 + σt)1/σ

)
.

Or it may be written as

v
(
t′, x′) ≡ ent′u

(
1
σ

(eσt′ − 1), x′et′
)

φ
(
t′, x′) ≡ ent′ψ

(
1
σ

(eσt′ − 1), x′et′
)

and the resulting scaling equation of (v, φ) follows by setting κ = n + 2 − σ = n(2 − α),


∂tv − div (∇vα + xv − e−κtv∇φ) = 0 t > 0, x ∈ R
n,

− e−2t∆φ + λφ = v,

v(0, x) = u0(x),

(4.3)

In this case, the vanishing exponent as before can be found as α = 2 by

0 = σ − n − 2 = n(α − 2)

and thus the subcritical case is corresponding to α < 2. Hereafter we analyze the above rescaled
equation (4.3) to see the asymptotic behavior of the solution. We slightly change the outlook of
the solution as follows:

The existence of the weak solution of (4.3) can be proven by a similar way to the original
equation. Indeed the scaling does not change any analytical feature of the original weak solution
so that the solution can be obtained from the weak solution of (1.9). Namely we again consider
the nonnegative weak solution v(t, x) as before.

4.2. Rescaled Conservations of Mass, Entropy and Moment. We revisited to the con-
servation laws and the entropy functional for the rescaled equation (4.3):

Proposition 4.1. Let κ = n(2−α) > 0 and assume that the initial data u0 ∈ Lα(Rn)∩L1
2(R

n)
with u0 ≥ 0. Let (v, φ) be a weak solution of (4.3) and set the functionals Ws(v, φ), H(v(t)) and
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Ks(v, φ) as follows:

Ws(v, φ)(t) ≡ 1
2
H(v(t)) − 1

2
e−κt

∫
Rn

v(t)φ(t) dx,

H(v(t)) =
2

α − 1

∫
Rn

vα(t)dx +
∫

Rn

|x|2v(t)dx,

Ks(x, v(t), φ(t)) ≡ ∇
( α

α − 1
vα−1 +

1
2
|x|2 − e−κtφ

)
.

(4.4)

Then we have the following identities:∫
Rn

v(t)dx =
∫

Rn

u0(x)dx,

Ws(t) +
∫ t

0

[∫
Rn

v |Ks(x, v, φ)(τ)|2 dxdτ + e−(κ+2)τ

∫
Rn

|∇φ(τ)|2dx

]
dτ ≤ Ws(0).

(4.5)

Proof of Proposition 4.1. Let κ = −(σ − n − 2) = n(2 − α) > 0. Multiplying (1.9) by
α

α − 1
vα−1 +

1
2
|x|2 − e−κtφ and integrating by parts, we see that∫

Rn

∂tv
( α

α − 1
vα−1 +

1
2
|x|2 − e−κtφ

)
dx

= −
∫

Rn

v
∣∣∣∇( α

α − 1
vα−1 +

1
2
|x|2 − e−κtφ

)∣∣∣2dx.

(4.6)

While the left hand side can be treated as;∫
Rn

∂tv ·
( α

α − 1
vα−1 +

1
2
|x|2 − e−κtφ

)
dx

=
d

dt

[
1

α − 1

∫
Rn

vα dx +
1
2

∫
Rn

|x|2vdx −
∫

Rn

e−κtvφ dx

]
+

∫
Rn

v · ∂t(e−κtφ) dx.

By the elliptic part of the system,∫
Rn

v · ∂tφdx =e−2t

∫
∇φ · ∇∂tφdx + λ

∫
Rn

φ · ∂tφ dx

=
1
2

d

dt

∫
Rn

(
e−2t|∇φ|2 + λ|φ|2

)
dx + e−2t

∫
Rn

|∇φ|2dx.

Namely we obtain∫
Rn

v · ∂t(e−κtφ)dx =
1
2

d

dt

∫
Rn

e−κtvφdx + κe−κt

∫
Rn

vφdx

+ e−(κ+2)t

∫
Rn

|∇φ|2dx − κe−κt

∫
Rn

vφdx.

Thus the left hand side of (4.6) is

d

dt

( 1
α − 1

‖v(t)‖α
α +

1
2

∫
Rn

|x|2vdx −
∫

Rn

e−κtvφ dx +
1
2

∫
Rn

e−κtvφdx
)

+ e−(κ+2)t

∫
Rn

|∇φ|2dx

=
d

dt
Ws(v, φ)(t) + e−(κ+2)t

∫
Rn

|∇φ|2dx.

(4.7)
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Combining (4.6) and (4.7),

Ws(v, φ)(t)+
∫ t

0

[∫
Rn

v(τ)
∣∣∣Ks(x, v(τ), φ(τ))

∣∣∣2dx + e−(κ+2)τ

∫
Rn

|∇φ(τ)|2dx

]
dτ = Ws(u0)

(4.8)

Again the rigorous justification requires regularizing argument for the equation and we obtain
the inequality version of (4.8) as a consequence.

The following estimate is a direct consequence of the above a priori bound of the rescaled
solution.

Proposition 4.2. Let (v(t), φ(t)) be a weak solution of (4.3). For the case 1 < α ≤ 2 − 2
n with

small data
‖u0‖1 ≤ Cn.

(1) Then we have
‖v(t)‖q ≤ C

for all 1 ≤ q ≤ ∞ and
(2) for all n/n − 1 < r ≤ ∞,

‖∇φ(t)‖r ≤ Ce2t.

Proof of Proposition 4.2.
The proof goes in a similar way of proof of Lemma 2.2. Let Eλ,t be the fundamental solution

of (−e−2t∆+λ) in R
n. Then for v ∈ L1(Rn)∩Lα(Rn), let φ = Eλ,t ∗ v be solution of the second

equation of the system (4.3). Then we have

e−κt

2
(
e−2t‖∇φ‖2

2 + λ‖φ‖2
2

)
=

∫
Rn

e−κtvφdx ≤ e−κt‖Eλ,t‖
L

n
n−2
w

‖v‖1−γ
1 ‖v(t)‖1+γ

α(4.9)

for any γ = α(n−2)
n(α−1) − 1 < α − 1.

Indeed, by the Hölder inequality,∫
Rn

vφdx ≤‖v‖r‖φ‖r′ for
1
r

+
1
r′

= 1

≤‖v‖1−γ
1 ‖v‖γ

α‖φ‖r′

(
1
r

= 1 − γ +
γ

α

)

≤‖Eλ,t‖
L

n
n−2
w

‖v‖1−γ
1 ‖v‖1+γ

α

(
1
r′

=
n − 2

n
+

1
α
− 1

)
.

(4.10)

Under the assumption α ≤ 2 − 2
n ,

α

(
1 − 1

α

)
≤ (γ + 1)

(
1 − 1

α

)
=

n − 2
n

and this gives γ + 1 ≥ α. Hence noting that ‖Eλ,t‖n/(n−2) � Ce2t ≤ Ceκt, we have

e−κt

∫
Rn

v(t)φ(t)dx ≤C‖v(t)‖1−γ
1 ‖v(t)‖1+γ

α(4.11)

and
‖v(t)‖α

α ≤ Ws(0) + C‖u0‖1−γ
1 ‖v(t)‖1+γ

α ,
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where γ + 1 ≥ α. Therefore under the smallness condition

‖u0‖1 < Cn,

we reach the bound
‖v(t)‖α

α ≤ C

uniformly in t. Hence for 1 ≤ q ≤ 2 − 2
n , the estimate (4.11), L1 conservation law and the

entropy bound
Ws(t) ≤ Ws(0)

imply

1
2(α − 1)

‖v(t)‖α
α +

1
2

∫
Rn

|x|2v(t)dx ≤ C(Ws(0) + Cn‖u0‖
α(1−γ))
α−(γ+1)

1 )(4.12)

for all t ∈ [0,∞), where γ < α − 1. Here we note that

α(1 − γ)
α − (1 + γ)

=
n(α − 2) + 2α

nα + 2
.

For the case q ≥ 2 − 2
n , the estimate is quite similar to the proof of Theorem 2.4. We apply

the standard parabolic estimate that we see for any q > α that
d

dt
‖v(t)‖q

q + n(q − 1)‖v(t)‖q
q +

2r

α + q − 1
‖∇vγ(t)‖2

2

=(q − 1)e−κt

∫
Rn

∇vr(t) · ∇φ(t)dx ≤ C(q − 1)e−(κ−2)t‖v(t)‖q+1
q+1

(4.13)

by the positivity of (v, φ), where γ = 1
2(α + q− 1). Noting κ > 2 under 1 < α < 2− 2

n , the very
much similar argument in the proof of Theorem 2.4 implies

‖v(t)‖q ≤ C(Ws(0), ‖u0‖1, ‖u0‖∞)

for any 1 ≤ q ≤ ∞ and we obtain the desired apriori estimate for t ∈ [0,∞). Note that one can
eliminate the initial restriction ‖u0‖q by the parabolic regularity argument.

The estimate for the potential term φ directly follows from the estimate for v(t) and the
Hardy-Littlewood inequality: by ∇φ = (−e−2t∆ + 1)−1∇v,

‖∇φ‖q =‖(−e−2t∆ + 1)−1∇v‖q

≤Ce2t‖(−e−2t∆ + 1)−1e−2t∆v‖r

≤Ce2t‖v‖r ≤ Ce2t

with q > n/(n − 1) and
1
q

=
1
r
− 1

n
.

Once we obtain the above uniform bound for the rescaled solution, we can immediately obtain
the time decay estimate for the solution of the original equation.∫

Rn

vq(t′, x′)dx′ =
∫

Rn

en(q−1)t′uq(t, x)dx = (1 + σt)(q−1)n/σ

∫
Rn

uq(t, x)dx(4.14)

in the original variables (t, x). Hence we obtain the following decay estimate for the original
solution as a corollary of Proposition 4.2.
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Proposition 4.3. Let u0 ∈ L1
2(R

n)∩L∞ and (u(t), ψ(t)) be a weak solution of (1.9). Then for
1 < α ≤ 2 − 2

n with small initial data ‖u0‖1 < ε, we have

‖u(t)‖q ≤ C(1 + σt)−
n
σ

(1− 1
q
)

for all 1 ≤ q ≤ ∞.

5. Asymptotic Profile

The expected asymptotic profile of the decaying solution is governed by the principal term
and it is corresponding to the Barenbladt solution of the single porous medium equation

∂tu − ∆uα = 0, x ∈ R
n, t > 0.

Applying the method of the transport equation or Fokker-Planck equation due to Carrillo-
Toscani [8].
Definition. For α > 1, we let

U(t, x) ≡ (1 + σt)−
n
σ

[
A − 2α

α − 1

( |x|
(1 + σt)1/σ

)2
]1/(α−1)

+

,(5.1)

where σ = n(α − 1) + 2 and A is chosen such that ‖U‖1 = 1.
We have the following result.

Theorem 5.1. Let λ > 0 and 1 < α < 2− 2
n . Then for any positive initial data u0 ∈ L1

2(R
n)∩

L∞(Rn), the decaying weak solution u(t, x) in Proposition 4.3 with the small initial data satisfies
the following asymptotic behavior: For M = ‖u0‖1,

‖u(t) − MU(t)‖1 ≤ (1 + σt)−
1
σ
−ν

where σ = n(α − 1) + 2 and ν = n(2 − α) − 2.

Here, we only give a shortened story of the proof of Theorem 5.1. The detailed version may
appear in elsewhere. Applying the method of the transport equation or Fokker-Planck equation
due to Carrillo-Toscani [8], we compute the time derivative of the 2nd moment: For a weak
solution u and ψ of (4.3) , we let

H(v(t)) ≡
∫

Rn

|x|2v(t)dx +
2

α − 1

∫
Rn

vα(t)dx,(5.2)

J(v(t)) ≡
∫

Rn

v(t)
∣∣∣∣∇

(
α

α − 1
vα−1(t) +

|x|2
2

)∣∣∣∣
2

dx,(5.3)

I(v(t)) ≡
∫

Rn

v(t)
∣∣∣∣∇

(
α

α − 1
vα−1(t) +

|x|2
2

− e−κtφ(t)
)∣∣∣∣

2

dx.(5.4)

It is now well understood that for a weak solution v and φ of (4.3) , the functional H(v) plays
a metric for the solution spaces: Namely we have

|H(v(t)) − H(v(s))| ≤2
∫ t

s
J(v(τ))dτ +

∫ t

s
e−κτ

[∫
Rn

e2τvα+1(τ)dx +
∫

Rn

|φ(τ)|2dx

]
dτ,(5.5)

where κ = n(2 − α). In particular, for 1 < α < 2 − 2
n , we have that H(v(t) is monotonically

decreasing in t and

H(v(t)) ≤ H(u0), t > 0.(5.6)
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The inequality (5.5) follows from the similar way we derived (4.5) in Proposition 4.1. Under
the condition 1 < α ≤ 2 − 2

n we see κ ≥ 2 and we have already seen that ‖v‖α+1
α+1 ≤ C and

‖φ‖2 ≤ C, it follows
H(v(t)) ≤ C

and for some appropriate sequence {tn}n,

lim
n→∞

H(v(tn))−H(u0) + 2
∫ ∞

0
J(u(τ))dτ

≤2
∫ ∞

0
e−κτ

∫
Rn

(
|φ(τ)|2 + e2τvα+1(τ)

)
dxdτ < ∞,

|H(v(tn)) − H(v(tm))|

≤2
∫ tn

tm

J(u(τ))dτ + 2
∫ tn

tm

e−κτ

∫
Rn

(
|φ(τ)|2 + e2τvα+1(τ)

)
dxdτ → 0, n, m → ∞

and this shows that {H(v(tn))}n is the Cauchy sequence in n → ∞.
On the other hand, one may observe that the functional I(v) has time decaying properties:

Since 2(κ − 2) = 2n(2 − α) − 4 > 0 under the condition α < 2 − 2
n , we choose η such that

ν ≡ 2 − η < min(2(κ − 2), 1) and it follows that

I(v(t)) ≤ e−νt

(
I(v0) + C

∫ ∞

0
eν−2(κ−2))τdτ

)
(5.7)

This is obtained by the direct estimate for the functional I(v) with aid of the regularity of the
solution.

On the other hand, by a suitable subsequence tn, {H(v(tn))}n is a Cauchy sequence there
exists a constant H∞ such that lim

n→∞
H(v(tn)) = H∞. Moreover, d(f, g) ≡ |H(f) − H(g)|

becomes a metric and the set

X = {f ∈ Lα(Rn), xf ∈ L1, f ≥ 0}
is a complete metric space by this metric we conclude that there exists a limit function v∞ in
X such that

v(tn) → v∞ tn → ∞
in X. While by (5.8) I(v(tn)) → 0 (n → ∞),

I(v∞) = 0

and we obtain ∇vα−1
∞ = −α−1

α x. this concludes by recalling M = ‖u0‖1,

v∞(x) = MV (x) = M

[
A − α − 1

2α
|x|2

]1/α−1

+

,

where A is chosen such that the L1 norm of V (x) is normalized as 1. Again by estimate (5.5)
gives

0 ≤ H(v(t)) − H(v∞) ≤− 2
∫ ∞

t
I(v(τ))dτ +

∫ ∞

t
e−κτ

[∫
Rn

e2τvα+1(τ)dx +
∫

Rn

|φ(τ)|2dx

]
dτ

(5.8)
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the desired estimate
‖v(t) − MV ‖1 ≤ Ce−(κ−2)t

follows from the Csiszar-Kulback inequality. This gives Theorem 5.1 by change of the variable
into the original variables.

The entire proof relies on the regularity theorem of the degenerated parabolic equation and
the crucial estimate for I(v) requires some estimates. The detailed discussion will be shown in
elsewhere.
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