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1. INTRODUCTION  

 In previous studies on the fracture of brittle rock, 

it is mostly assumed that microfractures are 

initiated and propagate from isolated pre-existing 

microcracks in rock. Such a crack model cannot be 

said to represent the crack system in real rock. 

Moreover, we have few studies on rock fracture, 

which consider interactions between cracks and 

failure process after peak stress. To clarify the 

mechanism for the fracture in rock, it is necessary 

to perform an analysis by using a rock model 

having a 3D network of microcracks that influence 

each other in a complexed manner. 

 In this study, first, I developed a method for 

creating on a computer a specimen of 

polycrystalline rock that has a network of 

intergranular cracks, assuming that grain boundaries 

of polycrystalline rock are microcracks (week 

planes) in the rock. Second, 3D finite element 

elastic analysis was performed for the model of the 

polycrystalline rock in uniaxial compression to 

estimate the elastic properties and the stress 

distributions in the intergranular cracks. Finally, 

fracture analysis was performed for the 

polycrystalline rock model in uniaxial tension to 

clarify the influence of the intergranular cracks on 

the failure process of the polycrystalline rock. 

 

2. POLYCRYSTALLINE ROCK MODEL 

 Fig. 1 shows the surface of the polycrystalline 

rock model created in this study. The method for 

creating the polycrystalline rock model is as 

follows: 

1) Crystal nuclei that are apart more than a 

certain distance are generated at random in a 

specified region. 

2) Crystals grow from the nuclei simultaneously 

with the same rate. 

3) Intergranular cracks (grain boundaries) form 

between two crystals. 

4) A cubic specimen model is cut out from the 

polycrystalline rock model. 

 In this study, the minimum value for the distance 

between crystal nuclei (lm) was introduced and a 

certain number (n) of nuclei were generated in a 

region. Fig. 2 shows the comparison of the number 

of vertex in a cross section between the 

polycrystalline rock model (Fig. 1) and Akiyoshi 

marble. It can be said that the model reproduces the 

polycrystalline rock to some degree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. ELASTIC ANALYSIS OF THE 

POLYCRYSTALLINE ROCK MODEL IN 

UNIAXIAL COMPRESSION 

3.1 FINITE ELEMENT ANALYSIS 

 In 3D finite element analysis, crystals were 

divided into tetrahedral solid elements and crystal 

planes (intergranular cracks) were divided into 

triangular joint elements 
[1]

. In the joint element, 

two planes without thickness were connected to 

each other with two springs with normal (kn) and 

shear (ks) stiffnesses.  

Fig .1 Polycrystalline model (lm = 20 mm, n = 80). 

Fig. 2 Comparison of the number of vertex 

in a cross section. 



 The elastic analysis was performed in uniaxial 

compression under the conditions that a uniform 

displacement in the vertical direction was given to 

the upper end surface while the lower surface was 

fixed in the vertical direction. The model used in 

the elastic analysis was the same as that shown in 

Fig. 1. By changing the values of kn and ks for the 

intergranular cracks, while keeping Young’s 

modulus E (100 GPa) and Poisson’s ratio  (0.2) of 

the crystals constant, the elastic properties of the 

model and the stress distributions in the 

intergranular cracks were estimated.  

 

3.2 YOUNG’S MODULUS AND POISSON’S 

RATIO 

 Fig. 3 shows the relations between both the 

effective Young’s modulus (Eeff) and the effective 

Poisson’s ratio (eff) of the polycrystalline rock 

model, the normal stiffness (kn) and the ratio of the 

shear stiffness to the normal stiffness (ks/kn). The 

effective Young’s modulus (Eeff) and the effective 

Poisson’s ratio (eff) of the polycrystalline rock 

model is normalized by Young’s modulus (E) and 

Poisson’s ratio () of the crystal. The effective 

Young’s modulus (Eeff) of the polycrystalline rock 

model is mainly governed by the normal stiffness 

(kn) and increases with kn, while the effective 

Poisson’s ratio (eff) of the polycrystalline rock 

model is mainly governed by the ratio of the shear 

stiffness to the normal stiffness (ks/kn) and increases 

with a decrease in ks/kn. 

 

3.3 THE DISTRIBUTION OF NORMAL AND 

SHEAR STRESSES 

 Fig. 4 shows the relation between the inclination 

angle () of the intergranular cracks and both 

normal (n) and shear () stresses normalized by the 

magnitude of the axial stress (z) for kn =10
6
 

MPa/m. The ratios of the shear stiffness to the 

normal stiffness (ks/kn) are 1 and 0.1. Tension is 

positive for the normal stress (n). Solid circles 

show the stresses on the cracks that penetrate to the 

upper and lower end surfaces of the polycrystalline 

rock model, open squares show those of the cracks 

that only penetrate to side surfaces, and crosses 

show those of the other cracks. Solid lines show the 

stresses in a homogeneous body, as given by  
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As ks/kn decreases, the shear stress () on the 

intergranular cracks decreases and the normal stress 

(n) in the intergranular cracks with a large 

inclination angle relative to the loading axis 

Fig. 3 Effects of kn and ks on (a) Eeff/E and (b) 

eff/ of polycrystalline rock model. 

 

Fig. 4 Relation between  and both n/|z| and 

/|z| for kn = 10
6
 MPa/m, and (a) ks/kn = 1 and 

(b) ks/kn = 0.1.   

(b) ks / kn = 0.1 

(a) ks / kn = 1 



increases in tension while that with a small 

inclination angle increases in compression. Thus, n 

and  deviate more from the values in the 

homogeneous body as ks/kn decreases. Furthermore, 

it was found that n and  on the intergranular 

cracks that penetrate to the upper and lower end 

surfaces of the polycrystalline rock model (solid 

circles in Fig. 4), are much smaller than those in 

other points, since the relative displacements in 

such intergranular cracks are constrained by the 

boundary conditions of displacement. 

 

4. FRACTURE BEHAVIOR OF THE 

POLYCRYSTSALLINE ROCK MODEL IN 

UNIAXIAL TENSION 

4.1 METHOD OF ANALYSIS 

 In this study, the associated flow rule 
[2]

 in the 

general theory of plasticity was applied. In order to 

clarify the influence of the intergranular cracks, it 

was assumed that the crystals do not fail, but only 

the boundaries of the crystals will fail. 

 An extended Coulomb criterion that extends the 

Coulomb criterion to the tension side was applied, 

as show in Fig. 5, where the stresses are normalized 

by the uniaxial tensile strength of the intergranular 

cracks (T0). Tension is taken to be positive. In the 

compression side, the peak strength (p) and the 

residual strength (r) were given by the following 

equations:  
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where c0 is the cohesion of the peak strength and 0 

and r are the frictional coefficients of the peak and 

residual strengths, respectively. In the tension side, 

failure criterion was defined by the following 

equation according to the Brazilian test (broken 

circle line in Fig. 5): 
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 When the stresses on the intergranular cracks 

satisfy equations (2) and (3), fracturing starts, and 

with the progress of failure, the tensile strength (T) 

changes from T0 to 0, the shear strength () changes 

from p to r and the cohesion (c) changes from c0 

to 0. When the tensile strength of an intergranular 

fracture is T, the failure condition in tension is 

given by 

  ,4 222 TTn        (4) 

and that in compression is given by 

,nc        (5) 

where T, c and  are tensile strength, cohesion, and 

frictional coefficient in the failure process. 

Frictional coefficient () is assumed to decrease 

linearly with the tensile strength from 0 to r. The 

cohesion (c) is expressed by a function of T to 

smoothly connect equation (4) with equation (5). 

The relation between the normal and shear stresses 

(nb, b) at the boundary between tension and 

compression is shown by solid line in Fig. 5. When 

an intergranular crack is fractured in tension, this is 

called tensile failure and when it is fractured in 

compression, this is called shear failure. 

 Tension-shear softening law was assumed for the 

intergranular fracture, as was given by the 

following equation: 
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where  is a coefficient that expresses the speed of 

failure progress and ep is an equivalent permanent 

displacement determined from the permanent 

normal (np) and shear displacements (sp), as given 

by Fig. 5 Failure criterion. 
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4.2 THE CONDITIONS OF ANALYSIS 

 For the 3D finite element fracture analysis, 

polycrystalline rock models were created with lm = 

50 mm and n = 10. Table 1 shows the mechanical 

properties used in the simulation to simulate hard 

rocks.   

 

 

 

 

 

 

4.3 RESULTS 

4.3.1 FAILURE PROCESS IN UNIAXIAL 

TENSION 

 Fig. 6 shows a typical stress-strain curve and a 

change in the number of failure mode during failure 

process (= 0.1). When paying attention to the 

change in the number of failure mode, first of all, 

tensile failure occurs before the peak and unloading 

begins to occur around the peak. After the peak, 

tensile failure modes decrease to be transformed by 

shear failure modes.  

 Such fracture behavior can be explained by the 

following mechanism. In the beginning, tensile 

failures occur for the intergranular cracks with the 

normal direction near the loading axis. Then, the 

failure mode of the intergranular fractures with 

tensile mode changes to unloading when the 

fracture cannot be a part of the main fracture. As the 

failure progress, tensile fractures with the normal 

direction that is deviated from the loading axis 

change their failure mode to shear failure in order to 

connect fractures to form a main fracture, and a 

main fracture surface gradually forms. 

 

4.3.2 INFLUENCE OF TENSION-SHEAR 

SOFTENING LAW 

 Fig. 7 shows stress-strain curves when the 

coefficient  in the tension-shear softening law is 

changed. As  increases, the stress and strain at peak 

decrease and stress drop after peak becomes rapid, 

since the number of intergranular fracture decreases 

as  increases. 

5. CONCLUSION 

 In this study, first, I developed a method for 

creating a polycrystalline rock model and showed 

that the method can reproduce a real polycrystalline 

rock. Second, elastic analysis in uniaxial 

compression was performed for the model and the 

elastic properties of the model and the stress 

distribution in the intergranular cracks were 

estimated. Finally, fracture analysis was performed 

in uniaxial tension and the influences of the 

intergranular cracks on the failure process of the 

polycrystalline rock were clarified. 
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Fig. 6 Stress-strain curves and change in the 

number of failure mode. 

Fig. 7 Stress-strain curves for  = 0, 0.01, 0.05, 

0.1, 0.15, and 0.2. 

Table 1 Mechanical properties used in the 

simulation. 

E  (GPa)  k n (MPa/m) k s (MPa/m)  0  r T 0　(MPa)

100 0.2 5.0×10
6

2.5×10
6 1.0 1.0 1.0


