A surface encoder for MDOF position measurement

Principle for 2DOF position measurement

Surface profile of the angle grid:

\[
b(x,y) = -A_x \cos \left(2\pi \frac{x}{P_x} \right) - A_y \cos \left(2\pi \frac{y}{P_y} \right)
\]

Output of the angle sensor:

\[
f(x) = \frac{\partial h}{\partial x} = 2\pi A_x \sin \left(2\pi \frac{x}{P_x} \right),
\]

\[
g(y) = \frac{\partial h}{\partial y} = 2\pi A_y \sin \left(2\pi \frac{y}{P_y} \right).
\]

3DOF measurement by two sensors

Principle

Detection of XY position from one sensor

Detection of \(\theta_z \) from difference of two sensors

Instrument

Experiment

5DOF measurement by a scanning sensor

Principle

Scanning a laser beam over the angle grid surface

\(\rightarrow \) Sinusoidal output from the sensor

Instrument

Experiment

XY-position

From the phase of output

- \(\theta_x, \theta_y \)
- From the offset of output

- \(\theta_z \)
 - From the number of sine waves.