
IIS Results

実績(件数)

IIS では、これまで多数の企業・団体と技術相談 及び補助事業採択応募の実績を築いています。

IIS Vision

日本の明るい未来を創造するために…

IIS研究センターは、「東北大学電気情報系約80研究室の総合力と相互連携」、「研究開発型企業との連携」、 「地域企業の活力・技術力」、「政府関係機関や地方自治体と協力」による産学官連携研究を推進し、 研究開発成果の実用化・社会普及を図ります。また、東日本大震災で被災した東北の企業や社会の復興への 手助けとなるよう活動していきます。 そして、最先端の大学研究が企業の技術力と結びつき、

~ 車が自動で走り、ロボットが暮らしを支える ~ そんな日本の未来を描いていきます。

● お問い合わせ

東北大学 情報知能システム研究センター

〒980-8579 宮城県仙台市青葉区荒巻字青葉6-6-05 TEL.022-795-4869 FAX.022-795-4870 URL : http://www.ecei.tohoku.ac.jp/iis/ Email: info@iisrc.ecei.tohoku.ac.jp

IIS Staff

北海道

青木 孝文

山口 正洋

鹿野 満

鈴木 陽-

| S東北大学 | 情報知能システム研究センター

最先端技術、と、社会、をつなぐ

Intelligent

Information

System research center

東北大学 情報知能システム研究センター

研究·開発型企業

地域企業

試作·実装· 研究員派遣

立地支援 仙台市・宮城県・各省庁・関連機関

東北大学の技術資源と企業の技術力を集結し、 実用化に向けた機動力のある産学官連携体制の もとに、大型プロジェクトの獲得を目指します。

東北大学の技術資源を実用化

■産学官連携による東北大シーズの実用化

企業との連携により

■共同研究を通じた高度な技術をもつ理系人材の育成

最高精度の信号・画像・映像を 作り出す技術

川又・阿部(正)研究室 www.mk.ecei.tohoku.ac.jp

工学研究科 電子工学専攻 電子システム工学講座

知的電子回路工学分野

研究分野の概要

本研究室では、音声、画像、映像、計 測データなどの信号に対して計算機に よるフィルタリングやフーリエ変換を行 うことで、信号に含まれる情報を最高 精度に引き出す技術を研究しています。 すなわち、信号中の雑音除去、信号の 強調、信号の圧縮、信号の復元に関す る理論的に最適な処理手法とそのハー ドウェアあるいはソフトウェアによる 最適な実装に関して総合的な研究を行 い、計測、通信、オーディオ、ビデオ、映 画等に応用しています。

主な産学連携テーマ

画像・映像の修復

悪条件下で画像・映像を取得すると、極めて 大きな雑音や歪が入ります。また、フィルム に記録された画像や映像も経年変換により だんだん劣化して行きます。これらの問題 を計算機により取り除くことで、より見やす く、認識しやすい画像・映像を作り出します。

画像・映像の修復

2. 適応・可変ディジタルフィルタ

計測された信号に混入する狭帯域雑音や白 色雑音は一定ではなく、時間とともにその性 質が変動していきます。このような場合には、 知的な能力をもつ適応・可変ディジタルフィ ルタにより雑音を常に正確に追跡していくこ とで適切に雑音を除去することができます。

アクティブノイズコントロール

3. アクティブノイズコントロール

信号中に含まれる雑音を除去するために、

その雑音に同振幅・逆位相の雑音をぶつけ

てキャンセルする方法があります。このア

クティブノイズコントロールには、ダクト内・

室内の騒音制御やイアホン・ヘッドホンの

雑音除去などに数多くの応用があります。

磁気が拓く 新しいIT技術の世界

山口・遠藤(恭)研究室

www.itmag.ecei.tohoku.ac.jp

工学研究科

電気エネルギーシステム専攻 エネルギーデバイス工学講座 マイクロエネルギーデバイス分野

研究分野の概要

IT機器が拓くユビキタス社会において、 IT機器の高周波化、小型・高密度実装化、 低消費電力化にともない、機器内での高 周波電磁ノイズ(伝送ノイズ、放射ノイ ズ)の問題が深刻化しつつあります。この 問題を解決するためには、LSIパッケージ レベルの対策が不可欠です。

我々の研究室では、近傍界計測・制御 に基づく総合的高周波磁界ノイズ対策と して、RF集積化マイクロ磁界プローブの 開発と高分解能ノイズ評価系の構築を行 っています。また、磁性薄膜を用いた集積 型ノイズ抑制体の開発を進めています。

主な産学連携テーマ

1.アンプ集積型マイクロ近傍電磁界 プローブの開発

LSIの信号品質の解析やノイズ電流源 の探索のため、多層平面型シールディド ループコイル方式によるマイクロ近傍 磁界プローブを開発しています。

MFM探針とRFICチップ

2. SPM探針を用いた超高感度電磁 ノイズ計測技術の開発

適応・可変ディジタルフィルタ

走査型プローブ顕微鏡(SPM)用探針を利用して 局所領域の磁気信号を計測できる磁場スイープ 磁気力顕微鏡(MFD-MFM)を開発しました。新 たに、SPMにヘテロダイン検波方式を付加するこ とにより、LSI上で発生する高周波電磁界ノイズ をサブミクロンサイズ以下の領域で検出します。

3. 各種用途に特化したチップの ノイズ解析と対策

IT機器の高周波化、小型・高密度実装 化、低消費電力化にともない深刻化す る高周波電磁ノイズ(伝送ノイズ、放射 ノイズ)を抑制するために、その次世代 技術である磁性薄膜を用いた集積型 ノイズ抑制体の開発を行っています。

高速移動体通信における

ICチップレベルの課題(本研究開発) RF回路のノイズ応答解析:無線通信システムの通信性能解析

R ノイズエミュレーションと

ノイズモニタリング(神戸大)

△ 高分解能RF (東北大) テストチップ

Ĭ 0.4

こノイズ低減磁性被膜(東北大) Cノイズ低減磁性被膜(NEC)

ICチップレベルの低ノイズ化の技術開発と評価

BRFノイズ結合チップ レベル解析(神戸大) ノイズモデルのインター

ボードレベル解析

(NEC)

D ノイズ対策基盤技術の

評価・実証に関する研究 (全共同研究機関・東北大まとめ)

システムレベルシミュレーションによる RFノイズ結合の物理素過程の解析:ノイズ対策と通信性能改善の評価 ICチップレベルの低ノイズ化の通信品質の解析

電気工学

研究キーワード(例)

通信工学

微小光学、超音波工学、高速光通信

研究キーワード(例)

研究キーワード(例)

プラズマ理工学、固体電子工学、電子物理工学、 極限知能デバイス工学、ナノフォトエレクトロニクス、量子光情報工学 物性機能設計、誘電ナノデバイス、固体電子工学、ナノ知能システム、 画像電子工学、知的電子回路工学、生体電子工学、電子制御工学、 半導体スピントロニクス、ナノ分子デバイス、応用量子光学、 ナノ集積デバイスプロセス、ナノスピンメモリ、スピントロニクス材料。 神経電子医工学、医用材料創製工学、腫瘍医工学、ナノバイオ医工学 病態ナノシステム医工学

電気・情報系の

6つの分野・約80の研究室が参画

工学研究科、電気通信研究所、情報科学研究科、医工学研究科

が連携し、約80の研究室の協力により、大学が持つ技術資源

マイクロエネルギーデバイス、グリーンパワーエレクトロニクス、 応用電磁エネルギー、ユビキタスエネルギー、生体電磁情報、

応用電気エネルギーシステム、エネルギー変換システム、

実世界コンピューティング、先端情報技術、先端電力工学

ヒューマンインターフェース、画像情報通信工学、通信方式、

情報ストレージシステム、新概念VLSIシステム、電磁波工学、

通信情報計測学、先端ワイヤレス通信技術、超ブロードバンド信号処理。

エネルギー生成システム、電力ネットワークシステム、

を活用して企業の研究開発を支援いたします。

_abo.

応用物理学

研究キーワード(例)

低温・超伝導物理学、電子材料物性学、強磁場超伝導材料、

情報工学

研究キーワード(例)

計算機構論、知能集積システム学、ソフトウェア基礎科学、 情報システム評価学、コミュニケーションネットワーク、 コンピューティング情報理論、ソフトウェア構成、アルゴリズム論、 知能システム科学、情報伝達学、情報生物学、生命情報システム科学、 バイオモデリング論、情報コンテンツ、先端音情報システム、 応用知能ソフトウェア、情報ネットワーク論、高次視覚情報システム、 情報コンテンツ、物理フラクチュオマティクス論、情報通信技術論、 画像情報通信工学、ヒューマンインターフェース、 実世界コンピューティング、新概念VLSIシステム、知的電子回路工学

バイオ・医工学

研究キーワード(例)

生体電磁波医工学、マイクロ磁気デバイス医工学、 実世界コンピューティング、腫瘍医工学、医用光工学、超音波ナノ医工学、 生体システム制御医工学、プラズマ理工学、バイオセンシング医工学、 生体超音波医工学、医用材料創製工学、病態ナノシステム医工学、 医用イメージング、ナノバイオ医工学、神経電子医工学、 分子情報デバイス医工学、情報生物学、生命情報システム科学、 バイオモデリング論

ピクセル分解能の 壁を越える画像技術の展開

青木(孝)・本間(尚)研究室 www.aoki.ecei.tohoku.ac.jp

情報科学研究科情報基礎科学専攻 計算科学講座計算機構論分野

研究分野の概要

本研究室では、主に次世代コンピューティン グ技術および画像・映像・マルチメディア信号処 理技術に関する以下の研究を推進しています。

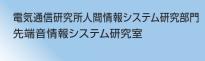
- ●超高性能コンピューティングの理論と応用
- ●次世代自動車および知能ロボティクス向け コンピュータビジョン
- ●3D空間情報センシングと コンピュータグラフィックス
- ●高臨場感マルチメディアと 環境適応ディスプレイ
- ●コンピュータビジョンと3次元物体認識 ●バイオメトリクス(牛体認証)と
- ヒューマンインターフェース
- ●暗号処理システムの攻撃·防御·設計技術と 情報セキュリティ


主な産学連携テーマ

位相情報に基づく超高精度画像 マッチングの応用

画像の位相情報に基づく一連の超高精度 画像マッチング技術を「位相限定相関法」と して体系化するとともに、さまざまな企業と の産学連携研究を通して広範囲の応用に 適用しています。位相限定相関法 (Phase-Only Correlation:POC)は、フー リエ変換によってさまざまな周波数の正弦 波の集まりとして表現された信号の位相情 報に着目した超高精度画像照合方式です。 2枚の画像の類似度や位置ずれをデルタ関 数のような鋭い相関ピークによって検出し ます。。

生体認証



組込みシステム向け耐タンパー性暗号ハードウェア

高臨場感・高迫真性を実現する 三次元音空間システムの創成

鈴木・坂本研究室

www.ais.riec.tohoku.ac.jp

研究分野の概要

本研究室は、単に物理的な音響の研究 だけでなく、人間が音をどのように聞い て処理するかといった、聴覚系の情報処 理過程を明らかにし、その知見を応用し て高度な音響臨場感通信システムや快 適な音環境の実現を目指しています。

主な産学連携テーマ

1. 高精度聴覚ディスプレイとその応用 人間は、音がどこから到来したのかを知覚 することができます。この知覚処理過程を 使って、臨場感ある音空間を提示する聴覚 ディスプレイの開発を進めています。

本研究室の聴覚ディスプレイ ●ミドルウェア聴覚ディスプレイ ●動的音空間の創成 ●頭部運動感応型 416-00

●個人化された音空間の合成

2. 音コミュニケーションの先進的支援技術

騒音下等、さまざまな環境における音コミュニケーションを 快適にする支援技術を開発しています。

●選択的両耳聴技術

人間は様々な方向から到来する複数 の音のなかから目的の音だけを聴取す る選択的両耳聴(カクテルパーティー 効果)と呼ばれる能力を持っています。 この能力をアシストするような信号処 期待されています。

●骨伝導コミュニケーションシステム

骨伝導デバイスは空気ではなく骨を振動させ ることで音を耳に伝えます。骨伝導デバイスを 使うと耳をふさがずに音を聞くことができるの で、耳閉感なく、外の音を聞きながら音楽を楽 しむことができることから、新しい音提示デバ 理を施すことで、騒音下での聞き取り イスとしての可能性や、バーチャルリアリティシ を容易くする方法を研究しています。ステムへの応用が期待されています。さらに、 さらにこの技術は、高齢者のコミュニ 圧電素子を振動子として使っているので、これ ケーションをアシストする技術としてもまでの骨伝導デバイスに比べ、軽量、小型化が 可能であり、外耳道内に挿入するデバイスとし ても使用可能であるという特徴を持っています。