
Energy Physics Engineering Advanced Fusion Reactor Engineering Advanced Fusion Reactor Engineering

核融合・電磁工学分野(橋爪・江原・遊佐研究室)

Department of Quantum Science and Energy Engineering

教授: 橋爪 秀利

准教授: 江原 真司

准教授: 遊佐 訓孝

助教: 伊藤 悟

事務補佐員: 尾本 由美

<u>学生</u>

D3: 青柳 光裕

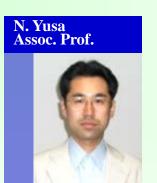
M2:稲毛 義樹、大日方 達也、川井 健司、久保 達也、 高村 宏行、 渡邊 篤史

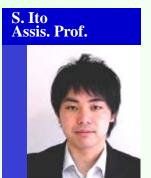
M】:加藤 雅子、 佐々木 幸太、 丹野 裕介

B4: 古舘 翔一、 宍戸 博樹、清野 祐太郎、 中村 奨太

B3:一色大地、石津 靖之、帰山英也、水谷淳

研究生: Anisseh Haswa


計19名


Energy Physics Engineering Advanced Fusion Reactor Engineering 核融合・電磁工学分野(橋爪・江原・遊佐研究室)

Department of Quantum Science and Energy Engineering

教授: 橋爪 秀利

准教授: 江原 真司

准教授: 遊佐 訓孝

助教: 伊藤 悟

事務補佐員: 尾本 由美

研究室紹介って 僕いないほうが いいよね? そうですね

Energy Physics Engineering Advanced Fusion Reactor Engineering 核融合・電磁工学分野(橋爪・江原・遊佐研究室)

Department of Quantum Science and Energy Engineering

教授: 橋爪 秀利

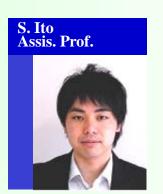
准教授: 江原 真司

准教授: 遊佐 訓孝

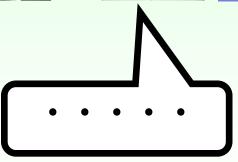
助教: 伊藤 悟

事務補佐員: 尾本 由美

というわけで 本年度の研究室紹介は何でもあ りです<●><●> 伊藤さんよろしく


Energy Physics Engineering Advanced Fusion Reactor Engineering 核融合・電磁工学分野(橋爪・江原・遊佐研究室)

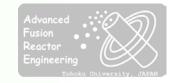
Department of Quantum Science and Energy Engineering


教授: 橋爪 秀利

准教授: 江原 真司

准教授: 遊佐 訓孝

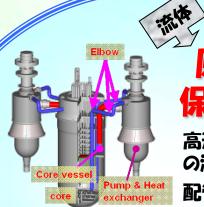
助教: 伊藤 悟


事務補佐員: 尾本 由美



橋爪・江原・遊佐研の研究分野

KIR. 超伝導機器応用


流体

高温超伝導送電ケーブル の接続技術

構造

三心一括型超電導ケーズル(住友電工 超伝導Webより

原子炉 保全工学

構造

高速炉冷却システム の流動制御 配管減肉事象の解明

次世代型高速炉JSFR (日本原子力研究開発機構) 非破壊検査法の開発

流体 拉熱

超高熱流束除去技術

PCのCPUの冷却 自動車の電子部品の冷却 製鉄ラインの冷却

橋爪・江原・遊佐研の研究分野

起 ヘリカル

流体 構造

超伝導機器応用

高温超伝導送電ケーブル の接続技術

三心一括型超電導ケーブル(住友電工 超伝導Webより

国際熱核融合実験炉 ITER

超伝導コイル設計 液体プランケットから ダイバータ冷却

エネルギ・ 総合工学

原子炉

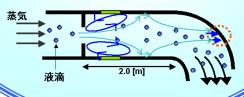
構造

保全工学

高速炉冷却システム の流動制御

配管減肉事象の解明

非破壊検査法の開発


次世代型高速炉JSFR (日本原子力研究開発機構)

揮熱

流体

PCのCPUの冷却 自動車の電子部品の冷却 製鉄ラインの冷却

共同研究·研究協力機関

超伝導コイル設計・超伝導機器応用:

核融合科学研究所、東北大金材研附属強磁場超伝導材料研究センターマサチューセッツ工科大学 Plasma Science and Fusion Center

先進液体でランケット設計:

核融合科学研究所、東北大金材研附属強磁場超伝導材料研究センター 日米協力事業核融合分野 TITANプロジェクト(受入先:UCLA)参画

ダイバータ冷却・高熱流束除去技術:

某自動車会社、某製鉄会社

核融合 炉工学

高速炉冷却システム流動制御:

日本原子力研究開発機構、三菱重工、電力中央研究所、愛媛大学

配管減肉事象解明·非破壞検査:

東北電力

高経年化対策強化基盤整備事業 参画

東北大流体研: 「流動ダイナミクス知の融合教育研究世界拠点」プログラム 参画

卒業生の就職先

Advanced Fusion Reactor Engineering

H24年度 D3:日本原子力研究開発機構

M2:東芝、東芝プラントシステム、JFEスチール、

三菱自動車、テンソー、スタンレー電気

H23年度 M2:東北電力、IHI、三菱電機、富士通、シーテック

H22年度 M2:東北電力、セイコーエでソン、日本海事協会

H21年度 M2:三菱重工、日立プラントテク/ロジー

H20年度 M2:三菱重工、全日空、JR東日本、ヤマハ発動機

H19年度 D3:Shiraz大学(助教)、電力中央研究所

M2:東京電力、住友重機械、テンソー、日本航空、国土交通省

H18年度 D3:東北大学(助教)

M2:東芝、三菱重工、デンソー、ヤマハ発動機

H17年度 D3:東北大学(助教)

M2:東芝、東京電力、日本原電

H16年度 M2:ローム B4:自衛隊

H15年度 M2: デンソー、富士重工

機械・電気・原子力

様々な分野で活躍

研究室生活

橋爪・江原・遊佐研究室 鉄の掟

- 4年生以上は毎日研究室に来るべし。 (欠席時は要連絡・コアタイムなし)
- 研究室のゼミ・行事には必ず参加するべし。
- 部活・アルバイトをやる場合、研究・学業に支障が 出ないようにするべし。(スケジュールの自己管理)
- 他人の時間を大切にすべし。
- ・締切を守るべし。

報告・連絡・相談を 怠るべからず

3年生のうちは何をするのか?

★ セミナー: 数値解析法(有限体積法)の勉強会 (毎週月曜日16:30~18:30 テスト期間・長期休業期間は除く)

教科書「Numerical Heat Transfer and Fluid Flow」Suhas V. Patankar 著

- B4、M1による講義形式で教科書の内容を勉強する。
- B3は最終課題としてC言語、もしくはFortranで有限体積法のコードを作り、 自分で設定した問題を解く。(B4が指導役としてつく。)

★ 研究テーマ仮配属(後期)

担当スタッフ・先輩の下につき研究の体験をする。

指導方針

Advanced
Fusion
Reactor
Engineering
Tohoku University, JAPAN

- 修士修了までに国際会議で研究成果を発表させる。(研究へのやる気・高い意識が必要)

国際会議での成果発表

• 自分が直面した障壁となる物事を理解し、問題抽出能力・解決へ導く プロセスの策定能力を身につけさせる。(問題解決への論理的思考力の育成)

<u>橋爪・江原・遊佐研究室 用語集より</u>

労働者

→言われた事を忠実にやる人

研究者・技術者

→言われた事以上の事を自分で考えて行うとても優秀な人 (橋爪・江原・遊佐研の学生はこれを目指す)

<u>昨年度流行語大賞@研究室会</u>

「君はただの労働者ですか?」

イベント企画(1) バレンタインデー

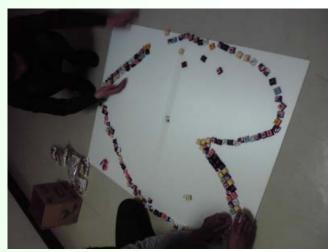
Advanced Fusion Reactor Engineering Tohoku University, JAPAN

- 1. 企画立案
- 2. 資材調達
- 3. 制作
- 4. 実施

B4 宍戸君 B4 清野君

イベント企画(1) バレンタインデー

- 1. 企画立案
- 2. 資材調達
- 3. 制作
- 4. 実施



イベント企画① バレンタインデー

Advanced Fusion Reactor Engineering Tohoku University, JAPAN

- 1. 企画立案
- 2. 資材調達
- 3. 制作
- 4. 実施

イベント企画(1) バレンタインデー

- 1. 企画立案
- 2. 資材調達
- 3. 制作
- 4. 実施

Advanced Fusion Reactor Engineering

- 1. 企画立案
- 2. 資材調達
- 3. 制作
- 4. 実施

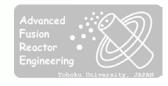
M1 加藤さん

B4 古舘君

B3 水谷君

研究生 Anissehさん

Advanced
Fusion
Reactor
Engineering
Tohoku University, JAPAN


- 1. 企画立案
- 2. 資材調達
- 3. 制作
- 4. 実施

- 1. 企画立案
- 2. 資材調達
- 3. 制作
- 4. 実施

Advanced
Fusion
Reactor
Engineering
Tohoku University, JAPAN

- 1. 企画立案
- 2. 資材調達
- 3. 制作
- 4. 実施

人材求む!

Advanced
Fusion
Reactor
Engineering
Tohoku University, JAPAN

- 核融合炉を実現させてやろうという気概にあふれる人
- 原子力発電所の安全性を高めようという高い志を持っている人
- 学生同士で教えあい、お互いに成長していける人
- 先輩に積極的に質問できる人、後輩の面倒をよく見れる人
- イベント企画をがんばってくれる人
- 研究室運営・研究教育について積極的に意見を言ってくれる人
- 橋爪先生とハイレベルな研究議論ができる人・したい人
- 江原先生の高いコミュカを上回ることができる人・それを目指したい人
- 遊佐先生の厳しい指導に耐えられる人・それを快感だと思える人
- 研究室ホームページを面白くしてくれる人
- 橋爪先生を使ったネタを作れる勇気のある人 (なお、研究室会にて、報復措置として、橋爪先生より厳しい質問が浴びせられる可能性があります)

続きはWebで!

橋爪研

検索

橋爪・江原・遊佐研究室ホームページ http://afre.qse.tohoku.ac.jp/